
 2003 Microchip Technology Inc. May 2003 DS30277D

In-Circuit Serial Programming™

(ICSP™) Guide

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical com-

ponents in life support systems is not authorized except with

express written approval by Microchip. No licenses are con-

veyed, implicitly or otherwise, under any intellectual property

rights.
DS30277D - page ii
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,

MPLAB, PIC, PICmicro, PICSTART, PRO MATE and

PowerSmart are registered trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL

and The Embedded Control Solutions Company are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM,

dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM,

fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC,

microPort, Migratable Memory, MPASM, MPLIB, MPLINK,

MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal,

PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select

Mode, SmartSensor, SmartShunt, SmartTel and Total

Endurance are trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2003, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2003 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

PAGE

Table of Contents
SECTION 1

INTRODUCTION

In-Circuit Serial Programming™ (ICSP™) Guide ... 1-1

SECTION 2

TECHNICAL BRIEFS

How to Implement ICSP™ Using PIC12C5XX OTP MCUs ... 2-1

How to Implement ICSP™ Using PIC16CXXX OTP MCUs ... 2-9

How to Implement ICSP™ Using PIC17CXXX OTP MCUs ... 2-15

How to Implement ICSP™ Using PIC16F8X FLASH MCUs .. 2-21

SECTION 3

 PROGRAMMING SPECIFICATIONS

In-Circuit Serial Programming for PIC12C5XX OTP MCUs ... 3-1

In-Circuit Serial Programming for PIC12C67X and PIC12CE67X OTP MCUs .. 3-15

In-Circuit Serial Programming for PIC14000 OTP MCUs ... 3-27

In-Circuit Serial Programming for PIC16C55X OTP MCUs .. 3-39

Programming Specifications for PIC16C6XX/7XX/9XX OTP MCUs .. 3-51

In-Circuit Serial Programming for PIC17C7XX OTP MCUs ... 3-75

In-Circuit Serial Programming for PIC18CXXX OTP MCUs ... 3-101

PIC16F8X EEPROM Memory Programming Specification .. 3-147

PIC16F62X EEPROM Memory Programming Specification .. 3-161

PIC16F87X EEPROM Memory Programming Specification .. 3-181

SECTION 4

APPLICATION NOTES

In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters

Using a PICmicro® Microcontroller ... 4-1
 2003 Microchip Technology Inc. DS30277D-page iii

NOTES:
DS30277D-page iv © 2003 Microchip Technology Inc.

IN-CIRCUIT SERIAL

PROGRAMMING™ GUIDE
Section 1 – Introduction
IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) GUIDE ... 1-1
 2003 Microchip Technology Inc. DS30277D-page 1-i

In-Circuit Serial Programming™ Guide
apPMOTTa-page 1-ii  2003 Microchip Technology Inc.

INTRODUCTION

In-Circuit Serial Programming™ (ICSP™) Guide
WHAT IS IN-CIRCUIT SERIAL
PROGRAMMING (ICSP)?

In-System Programming (ISP) is a technique where a

programmable device is programmed after the device

is placed in a circuit board.

In-Circuit Serial Programming (ICSP) is an enhanced

ISP technique implemented in Microchip’s PICmicro®

One-Time-Programmable (OTP) and FLASH RISC

microcontrollers (MCU). Use of only two I/O pins to

serially input and output data makes ICSP easy to use

and less intrusive on the normal operation of the MCU.

Because they can accommodate rapid code changes

in a manufacturing line, PICmicro OTP and FLASH

MCUs offer tremendous flexibility, reduce development

time and manufacturing cycles, and improve time to

market.

In-Circuit Serial Programming enhances the flexibility

of the PICmicro even further.

This In-Circuit Serial Programming Guide is designed

to show you how you can use ICSP to get an edge over

your competition. Microchip has helped its customers

implement ICSP using PICmicro MCUs since 1992.

Contact your local Microchip sales representative

today for more information on implementing ICSP in

your product.

PICmicro MCUs MAKE IN-CIRCUIT
SERIAL PROGRAMMING A CINCH

Unlike many other MCUs, most PICmicro MCUs offer a

simple serial programming interface using only two I/O

pins (plus power, ground and V
PP
). Following very sim-

ple guidelines, these pins can be fully utilized as I/O

pins during normal operation and programming pins

during ICSP.

ICSP can be activated through a simple 5-pin connec-

tor and a standard PICmicro programmer supporting

Serial Programming mode such as Microchip’s

PRO MATE® II.

No other MCU has a simpler and less intrusive Serial

Programming mode to facilitate your ICSP needs.

WHAT CAN I DO WITH IN-CIRCUIT
SERIAL PROGRAMMING?

ICSP is truly an enabling technology that can be used

in a variety of ways including:

• Reduce Cost of Field Upgrades

The cost of upgrading a system’s code can be

dramatically reduced using ICSP. With very little

effort and planning, a PICmicro OTP- or FLASH-

based system can be designed to have code updates

in the field.

For PICmicro FLASH devices, the entire code

memory can be rewritten with new code. In PICmicro

OTP devices, new code segments and parameter

tables can be easily added in program memory areas

left blank for update purpose. Often, only a portion of

the code (such as a key algorithm) requires update.

• Reduce Time to Market

In instances where one product is programmed with

different customer codes, generic systems can be

built and inventoried ahead of time. Based on actual

mix of customer orders, the PICmicro MCU can be

programmed using ICSP, then tested and shipped.

The lead-time reduction and simplification of finished

goods inventory are key benefits.

• Calibrate Your System During Manufacturing

Many systems require calibration in the final stages

of manufacturing and testing. Typically, calibration

parameters are stored in Serial EEPROM devices.

Using PICmicro MCUs, it is possible to save the

additional system cost by programming the calibra-

tion parameters directly into the program memory.

• Add Unique ID Code to Your System During

Manufacturing

Many products require a unique ID number or a

serial number. An example application would be a

remote keyless entry device. Each transmitter has a

unique “binary key” that makes it very easy to pro-

gram in the access code at the very end of the man-

ufacturing process and prior to final test.

Serial number, revision code, date code, manufac-

turer ID and a variety of other useful information can

also be added to any product for traceability. Using

ICSP, you can eliminate the need for DIP switches or

jumpers.
=2003 Microchip Technology Inc. DS30277D-page 1-1

In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc. SQTP is a service mark of Microchip Technology Inc.

Introduction
In fact, this capability is so important to many of our

customers that Microchip offers a factory program-

ming service called Serialized Quick Turn Program-

ming (SQTPSM), where each PICmicro MCU device is

coded with up to 16 bytes of unique code.

• Calibrate Your System in the Field

Calibration need not be done only in the factory.

During installation of a system, ICSP can be used to

further calibrate the system to actual operating

environment.

In fact, recalibration can be easily done during

periodic servicing and maintenance. In OTP parts,

newer calibration data can be written to blank

memory locations reserved for such use.

• Customize and Configure Your System in the

Field

Like calibration, customization need not be done in

the factory only. In many situations, customizing a

product at installation time is very useful. A good

example is home or car security systems where ID

code, access code and other such information can

be burned in after the actual configuration is deter-

mined. Additionally, you can save the cost of DIP

switches and jumpers, which are traditionally used.

• Program Dice When Using Chip-On-Board

(COB)

If you are using COB, Microchip offers a comprehen-

sive die program. You can get dice that are

preprogrammed, or you may want to program the die

once the circuit board is assembled. Programming

and testing in one single step in the manufacturing

process is simpler and more cost effective.

PROGRAMMING TIME
CONSIDERATIONS

Programming time can be significantly different

between OTP and FLASH MCUs. OTP (EPROM) bytes

typically program with pulses in the order of several

hundred microseconds. FLASH, on the other hand,

require several milliseconds or more per byte (or word)

to program.

Figure 1 and Figure 2 below illustrate the programming

time differences between OTP and FLASH MCUs.

Figure 1 shows programming time in an ideal program-

mer or tester, where the only time spent is actually pro-

gramming the device. This is only important to illustrate

the minimum time required to program such devices,

where the programmer or the tester is fully optimized.

Figure 2 is a more realistic programming time compar-

ison, where the “overhead” time for programmer or a

tester is built in. The programmer often requires 3 to 5

times the “theoretically” minimum programming time.

FIGURE 1: PROGRAMMING TIME FOR FLASH AND OTP MCUS

(THEORETICAL MINIMUM TIMES)

0

5

10

15

20

25

30

35

40

45

0 1K 2K 4K 8K 16K

Typical
Flash
MCU

Microchip
OTP MCU

P
ro
g
ra
m
m
in
g
 T
im

e
 (
S
e
c
o
n
d
s
)

Note 1: The programming times shown here only include the total programming time for all memory. Typically, a

programmer will have quite a bit of overhead over this “theoretical minimum” programming time.

2: In the PIC16CXX MCU (used here for comparison) each word is 14-bits wide. For the sake of simplicity,

each word is viewed as “two bytes”.

Memory Size (in bytes)

Typical

FLASH MCU

Microchip

OTP MCU
DS30277D-page 1-2  2003 Microchip Technology Inc.

Introduction
FIGURE 2: PROGRAMMING TIME FOR FLASH AND OTP MCUS

(TYPICAL PROGRAMMING TIMES ON A PROGRAMMER)

Ramifications

The programming time differences between FLASH

and OTP MCUs are not particular material for prototyp-

ing quantities. However, its impact can be significant in

large volume production.

MICROCHIP PROVIDES A COMPLETE
SOLUTION FOR ICSP

Products

Microchip offers the broadest line of ICSP-capable

MCUs:

• PIC12C5XX OTP, 8-pin Family

• PIC12C67X OTP, 8-pin Family

• PIC12CE67X OTP, 8-pin Family

• PIC16C6XX OTP, Mid-Range Family

• PIC17C7XX OTP High-End Family

• PIC18CXXX OTP, High-End Family

• PIC16F62X FLASH, Mid-Range Family

• PIC16F8X FLASH, Mid-Range Family

• PIC6F8XX FLASH, Mid-Range Family

All together, Microchip currently offers over 40 MCUs

capable of ICSP.

Development Tools

Microchip offers a comprehensive set of development

tools for ICSP that allow system engineers to quickly

prototype, make code changes and get designs out the

door faster than ever before.

PRO MATE II Production Programmer – a production

quality programmer designed to support the Serial

Programming mode in MCUs up to midvolume produc-

tion. PRO MATE II runs under DOS in a Command Line

mode, Microsoft® Windows® 3.1, Windows® 95/98,

and Windows NT®. PRO MATE II is also capable of

Serialized Quick Turn ProgrammingSM (SQTPSM),

where each device can be programmed with up to 16

bytes of unique code.

Microchip offers an ICSP kit that can be used with the

Universal Microchip Device Programmer,

PRO MATE II. Together these two tools allow you to

implement ICSP with minimal effort and use the ICSP

capability of Microchip's PICmicro MCUs.

Technical support

Microchip has been delivering ICSP capable MCUs

since 1992. Many of our customers are using ICSP

capability in full production. Our field and factory appli-

cation engineers can help you implement ICSP in your

product.

P
ro
g
ra
m
m
in
g
 T
im

e
 (
S
e
c
o
n
d
s
)

Memory Size (in bytes)

Note 1: The programming times shown are actual programming times on vendor supplied programmers.

2: Microchip OTP programming times are based on PRO MATE II programmer.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

0 1K 2K 4K 8K 16K

Typical
Flash
MCU

Microchip
OTP MCU

Typical

FLASH MCU

Microchip

OTP MCU
=2003 Microchip Technology Inc. DS30277D-page 1-3

Introduction
NOTES:
DS30277D-page 1-4  2003 Microchip Technology Inc.

IN-CIRCUIT SERIAL

PROGRAMMING™ GUIDE
Section 2 – Technical Briefs
HOW TO IMPLEMENT ICSP™ USING PIC12C5XX OTP MCUS ... 2-1

HOW TO IMPLEMENT ICSP™ USING PIC16CXXX OTP MCUS .. 2-9

HOW TO IMPLEMENT ICSP™ USING PIC17CXXX OTP MCUS .. 2-15

HOW TO IMPLEMENT ICSP™ USING PIC16F8X FLASH MCUS ... 2-21
 2003 Microchip Technology Inc. DS30277D-page 2-i

In-Circuit Serial Programming™ Guide
apPMOTTa-page 2-ii  2003 Microchip Technology Inc.

TB017
How to Implement ICSP™ Using PIC12C5XX OTP MCUs
INTRODUCTION

The technical brief describes how to implement in-cir-

cuit serial programming™ (ICSP) using the

PIC12C5XX OTP PICmicro® MCU.

ICSP is a simple way to manufacture your board with

an unprogrammed PICmicro MCU and program the

device just before shipping the product. Programming

the PIC12C5XX MCU in-circuit has many advantages

for developing and manufacturing your product.

• Reduces inventory of products with old

firmware. With ICSP, the user can manufacture

product without programming the PICmicro MCU.

The PICmicro MCU will be programmed just

before the product is shipped.

• ICSP in production. New software revisions or

additional software modules can be programmed

during production into the PIC12C5XX MCU.

• ICSP in the field. Even after your product has

been sold, a service man can update your

program with new program modules.

• One hardware with different software. ICSP

allows the user to have one hardware, whereas

the PIC12C5XX MCU can be programmed with

different types of software.

• Last minute programming. Last minute pro-

gramming can also facilitate quick turnarounds on

custom orders for your products.

IN-CIRCUIT SERIAL PROGRAMMING

To implement ICSP into an application, the user needs

to consider three main components of an ICSP system:

Application Circuit, Programmer and Programming

Environment.

Application Circuit

During the initial design phase of the application circuit,

certain considerations have to be taken into account.

Figure 1 shows and typical circuit that addresses the

details to be considered during design. In order to

implement ICSP on your application board you have to

put the following issues into consideration:

1. Isolation of the GP3/MCLR/VPP pin from the rest

of the circuit.

2. Isolation of pins GP1 and GP0 from the rest of

the circuit.

3. Capacitance on each of the VDD, GP3/MCLR/

VPP, GP1, and GP0 pins.

4. Interface to the programmer.

5. Minimum and maximum operating voltage for

VDD.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Thomas Schmidt

Microchip Technology Inc.

Application PCB

PIC12C5XX

GP3/MCLR/VPP

VDD

VSS

GP0

GP1

VDD VDD

To application circuit

Isolation circuits

ICSP Connector

PICmicro, PRO MATE and PICSTART are registered trademarks of Microchip Technology Inc.
In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK Preliminary apVNMNT_Jé~ÖÉ=OJN

TB017
Isolation of the GP3/MCLR/VPP Pin from the

Rest of the Circuit

PIC12C5XX devices have two ways of configuring the

MCLR pin:

• MCLR can be connected either to an external RC

circuit or

• MCLR is tied internally to VDD

When GP3/MCLR/VPP pin is connected to an external

RC circuit, the pull-up resistor is tied to VDD, and a

capacitor is tied to ground. This circuit can affect the

operation of ICSP depending on the size of the capac-

itor.

Another point of consideration with the GP3/MCLR/VPP

pin, is that when the PICmicro MCU is programmed,

this pin is driven up to 13V and also to ground. There-

fore, the application circuit must be isolated from the

voltage coming from the programmer.

When MCLR is tied internally to VDD, the user has only

to consider that up to 13V are present during program-

ming of the GP3/MCLR/VPP pin. This might affect other

components connected to that pin.

For more information about configuring the GP3/

MCLR/VPP internally to VDD, please refer to the

PIC12C5XX data sheet (DS40139).

Isolation of Pins GP1 and GP0 from the Rest

of the Circuit

Pins GP1 and GP0 are used by the PICmicro MCU for

serial programming. GP1 is the clock line and GP0 is

the data line.

GP1 is driven by the programmer. GP0 is a bidirec-

tional pin that is driven by the programmer when pro-

gramming and driven by the PICmicro MCU when

verifying. These pins must be isolated from the rest of

the application circuit so as not to affect the signals dur-

ing programming. You must take into consideration the

output impedance of the programmer when isolating

GP1 and GP0 from the rest of the circuit. This isolation

circuit must account for GP1 being an input on the PIC-

micro MCU and for GP0 being bidirectional pin.

For example, PRO MATE® II has an output impedance

of 1 kW. If the design permits, these pins should not be

used by the application. This is not the case with most

designs. As a designer, you must consider what type of

circuitry is connected to GP1 and GP0 and then make

a decision on how to isolate these pins.

Total Capacitance on VDD, GP3/MCLR/VPP,

GP1, and GP0

The total capacitance on the programming pins affects

the rise rates of these signals as they are driven out of

the programmer. Typical circuits use several hundred

microfarads of capacitance on VDD, which helps to

dampen noise and improve electromagnetic interfer-

ence. However, this capacitance requires a fairly strong

driver in the programmer to meet the rise rate timings

for VDD.

Interface to the Programmer

Most programmers are designed to simply program the

PICmicro MCU itself and don’t have strong enough

drivers to power the application circuit.

One solution is to use a driver board between the pro-

grammer and the application circuit. The driver board

needs a separate power supply that is capable of driv-

ing the VPP, VDD, GP1, and GP0 pins with the correct

ramp rates and also should provide enough current to

power-up the application circuit.

The cable length between the programmer and the cir-

cuit is also an important factor for ICSP. If the cable

between the programmer and the circuit is too long,

signal reflections may occur. These reflections can

momentarily cause up to twice the voltage at the end of

the cable, that was sent from the programmer. This

voltage can cause a latch-up. In this case, a termina-

tion resistor has to be used at the end of the signal line.

Minimum and Maximum Operating Voltage for

VDD

The PIC12C5XX programming specification states that

the device should be programmed at 5V. Special con-

siderations must be made if your application circuit

operates at 3V only. These considerations may include

totally isolating the PICmicro MCU during program-

ming. The other point of consideration is that the device

must be verified at minimum and maximum operation

voltage of the circuit in order to ensure proper program-

ming margin.

For example, a battery driven system may operate from

three 1.5V cells giving an operating voltage range of

2.7V to 4.5V. The programmer must program the

device at 5V and must verify the program memory con-

tents at both 2.7V and 4.5V to ensure that proper pro-

gramming margins have been achieved.
apVNMNT_Jé~ÖÉ=OJO Preliminary =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB017
THE PROGRAMMER

PIC12C5XX MCUs only use serial programming and,

therefore, all programmers supporting these devices

will support the ICSP. One issue with the programmer

is the drive capability. As discussed before, it must be

able to provide the specified rise rates on the ICSP sig-

nals and also provide enough current to power the

application circuit. It is recommended that you buffer

the programming signals.

Another point of consideration for the programmer is

what VDD levels are used to verify the memory contents

of the PICmicro MCU. For instance, the PRO MATE II

verifies program memory at the minimum and maxi-

mum VDD levels for the specified device and is there-

fore considered a production quality programmer. On

the other hand, the PICSTART® Plus only verifies at 5V

and is for prototyping use only. The PIC12C5XX pro-

gramming specifications state that the program mem-

ory contents should be verified at both the minimum

and maximum VDD levels that the application circuit will

be operating. This implies that the application circuit

must be able to handle the varying VDD voltages.

There are also several third-party programmers that

are available. You should select a programmer based

on the features it has and how it fits into your program-

ming environment. The Microchip Development Sys-

tems Ordering Guide (DS30177) provides detailed

information on all our development tools. The Micro-

chip Third Party Guide (DS00104) provides information

on all of our third party development tool developers.

Please consult these two references when selecting a

programmer. Many options exist including serial or par-

allel PC host connection, stand-alone operation, and

single or gang programmers.

PROGRAMMING ENVIRONMENT

The programming environment will affect the type of

programmer used, the programmer cable length, and

the application circuit interface. Some programmers

are well suited for a manual assembly line while others

are desirable for an automated assembly line. A gang

programmer should be chosen for programming multi-

ple MCUs at one time. The physical distance between

the programmer and the application circuit affects the

load capacitance on each of the programming signals.

This will directly affect the drive strength needed to pro-

vide the correct signal rise rates and current. Finally,

the application circuit interface to the programmer

depends on the size constraints of the application cir-

cuit itself and the assembly line. A simple header can

be used to interface the application circuit to the pro-

grammer. This might be more desirable for a manual

assembly line where a technician plugs the

programmer cable into the board.

A different method is the uses spring loaded test pins

(often referred as pogo-pins). The application circuit

has pads on the board for each of the programming sig-

nals. Then there is a movable fixture that has pogo pins

in the same configuration as the pads on the board.

The application circuit is moved into position and the

fixture is moved such that the spring loaded test pins

come into contact with the board. This method might be

more suitable for an automated assembly line.

After taking into consideration the issues with the

application circuit, the programmer, and the program-

ming environment, anyone can build a high quality,

reliable manufacturing line based on ICSP.

OTHER BENEFITS

ICSP provides several other benefits such as calibra-

tion and serialization. If program memory permits, it

would be cheaper and more reliable to store calibration

constants in program memory instead of using an

external serial EEPROM.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being repro-

grammed, but the PICmicro MCU architecture gives

you this flexibility provided the size of your firmware is

less than half that of the desired device.

This method involves using jump tables for the reset

and interrupt vectors. Example 1 shows the location of

a main routine and the reset vector for the first time a

device with 0.5K-words of program memory is pro-

grammed. Example 2 shows the location of a second

main routine and its reset vector for the second time the

same device is programmed. You will notice that the

GOTO Main that was previously at location 0x0002 is

replaced with an NOP. An NOP is a program memory

location with all the bits programmed as 0s. When the

reset vector is executed, it will execute an NOP and

then a GOTO Main1 instruction to the new code.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK Preliminary apVNMNT_Jé~ÖÉ=OJP

TB017
EXAMPLE 1: LOCATION OF THE FIRST MAIN ROUTINE AND ITS INTERRUPT VECTOR

MOVLW XX

MOVWF OSCAL

PROGRAM MEMORY

0X000

0X1FF

GOTO MAIN10X001

MAIN10X040

0X080

CALIBRATION VALUE

RESET VECTOR

MAIN1 ROUTINE

UNPROGRAMMED

UNPROGRAMMED

LEGEND: XX = CALIBRATION VALUE
apVNMNT_Jé~ÖÉ=OJQ Preliminary =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB017
EXAMPLE 2: LOCATION OF THE SECOND MAIN ROUTINE AND IT INTERRUPT VECTOR

(AFTER SECOND PROGRAMMING)

MOVLW XX

MOVWF OSCAL

PROGRAM MEMORY

0X000

0X1FF

NOP0X001

MAIN1
0X040

0X080

CALIBRATION VALUE

RESET VECTOR

MAIN1 ROUTINE

GOTO MAIN2

MAIN2

MAIN2 ROUTINE

0X10E

0X136

UNPROGRAMMED

UNPROGRAMMED

0X002

LEGEND: XX = CALIBRATION VALUE
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK Preliminary apVNMNT_Jé~ÖÉ=OJR

TB017
Since the program memory of the PIC12C5XX devices

is organized in 256 x 12 word pages, placement of such

information as look-up tables and CALL instructions

must be taken into account. For further information,

please refer to application note AN581, Implementing

Long Calls and application note AN556, Implementing

a Table Read.

CONCLUSION

Microchip Technology Inc. is committed to supporting

your ICSP needs by providing you with our many years

of experience and expertise in developing in-circuit

system programming solutions. Anyone can create a

reliable in-circuit system programming station by cou-

pling our background with some forethought to the cir-

cuit design and programmer selection issues

previously mentioned. Your local Microchip representa-

tive is available to answer any questions you have

about the requirements for ICSP.
apVNMNT_Jé~ÖÉ=OJS Preliminary =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB017
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1

V
m
m
_
O
U
T

T
O
 C
IR
C
U
IT

 3 2
 1

41
U
1
A

T
L
E
2
1
4
4
A

R
9

1
0
0

R
9

1
0
0

V
C
C

Q
1

2
N
3
9
0
6

R
1
0

1
0
0

R
2

3
3
k

 5 6
 7

U
1
B

T
L
E
2
1
4
4
A

V
`
`

V
C
C

1
5
V

E
X
T
E
R
N
A
L
 P
O
W
E
R
 S
U
P
P
L
Y

R
1
2

1
0
0
k

V
m
m
_
IN

F
R
O
M

P
R
O
G
R
A
M
M
E
R

C
1

1
N
F

D
1

1
2
.7
V

Q
2

2
N
2
2
2
2

R
1
3

5
k

Q
3

2
N
3
9
0
6

C
3

0
.1
µ
F

V
a
a
_
O
U
T

R
1
5

1
T
O
 C
IR
C
U
IT

C
6

0
.1
µ
F

 1
0

 9
 8

U
1
C

T
L
E
2
1
4
4
A

V
C
C

R
1
8

1
0
0

R
1
7

1
0
0

Q
4

2
N
2
2
2
2

R
2
2

5
k

R
1
9

1
0
0

C
4

1
N
F

D
2

6
.2
V

V
a
a
_
IN

 1
2

 1
3

1
4

U
1
D

T
L
E
2
1
4
4
A

R
4

1
0
k

R
2
1

1
0
0
k

F
R
O
M

P
R
O
G
R
A
M
M
E
R

G
P
1
_
IN

G
N
D
_
IN

G
N
D
_
O
U
T

F
R
O
M

P
R
O
G
R
A
M
M
E
R

F
R
O
M

P
R
O
G
R
A
M
M
E
R

T
O
 C
IR
C
U
IT

G
P
1
_
O
U
T

G
P
0
_
IN

F
R
O
M

P
R
O
G
R
A
M
M
E
R

T
O
 C
IR
C
U
IT

G
P
0
_
O
U
T

T
O
 C
IR
C
U
IT

N
o
te
:

T
h
e
 d
ri
v
e
r
b
o
a
rd
 d
e
s
ig
n
 M

U
S
T
 b
e
 t
e
s
te
d
 i
n
 t
h
e
 u
s
e
r'
s

a
p
p
lic
a
ti
o
n
 t
o
 d
e
te
rm

in
e
 t
h
e
 e
ff
e
c
ts
 o
f
th
e
 a
p
p
lic
a
ti
o
n
s

c
ir
c
u
it

o
n

th
e

p
ro
g
ra
m
m
in
g

s
ig
n
a
ls

ti
m
in
g
.
C
h
a
n
g
e
s

m
a
y
 b
e
 r
e
q
u
ir
e
d
 i
f
th
e
 a
p
p
lic
a
ti
o
n
 p
la
c
e
s
 a
 s
ig
n
if
ic
a
n
t

lo
a
d
 o
n
 V

D
D
,
V
P
P
,
G
P
0
 o
r
G
P
1
.

*
s
e
e
 t
e
x
t
in
 t
e
c
h
n
ic
a
l
b
ri
e
f.

*
s
e
e
 t
e
x
t
in
 t
e
c
h
n
ic
a
l
b
ri
e
f.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK Preliminary apVNMNT_Jé~ÖÉ=OJT

TB017
NOTES:
apVNMNT_Jé~ÖÉ=OJU Preliminary =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB013
How to Implement ICSP™ Using PIC16CXXX OTP MCUs
INTRODUCTION

In-Circuit Serial Programming™ (ICSP) is a great way

to reduce your inventory overhead and time-to-market

for your product. By assembling your product with a

blank Microchip microcontroller (MCU), you can stock

one design. When an order has been placed, these

units can be programmed with the latest revision of

firmware, tested, and shipped in a very short time. This

method also reduces scrapped inventory due to old

firmware revisions. This type of manufacturing system

can also facilitate quick turnarounds on custom orders

for your product.

Most people would think to use ICSP with PICmicro®

OTP MCUs only on an assembly line where the device

is programmed once. However, there is a method by

which an OTP device can be programmed several

times depending on the size of the firmware. This

method, explained later, provides a way to field

upgrade your firmware in a way similar to EEPROM- or

Flash-based devices.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take

to implement it in your application? There are three

main components of an ICSP system: Application

Circuit, Programmer and Programming Environment.

Application Circuit

The application circuit must be designed to allow all the

programming signals to be directly connected to the

PICmicro MCU. Figure 1 shows a typical circuit that is

a starting point for when designing with ICSP. The

application must compensate for the following issues:

1. Isolation of the MCLR/V
PP
 pin from the rest of

the circuit.

2. Isolation of pins RB6 and RB7 from the rest of

the circuit.

3. Capacitance on each of the VDD, MCLR/V
PP
,

RB6, and RB7 pins.

4. Minimum and maximum operating voltage for

VDD.

5. PICmicro Oscillator.

6. Interface to the programmer.

The MCLR/V
PP
 pin is normally connected to an RC cir-

cuit. The pull-up resistor is tied to VDD and a capacitor

is tied to ground. This circuit can affect the operation of

ICSP depending on the size of the capacitor. It is, there-

fore, recommended that the circuit in Figure 1 be used

when an RC is connected to MCLR/V
PP
. The diode

should be a Schottky-type device. Another issue with

MCLR/V
PP
 is that when the PICmicro MCU device is

programmed, this pin is driven to approximately 13V

and also to ground. Therefore, the application circuit

must be isolated from this voltage provided by the

programmer.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Rodger Richey

Microchip Technology Inc.

Application PCB

PIC16CXXX

MCLR/Vpp

Vdd

Vss

RB7

RB6

Vdd Vdd

To application circuit

Isolation circuits

ICSP Connector
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK Preliminary apVNMNP_Jé~ÖÉ=OJV

TB013
Pins RB6 and RB7 are used by the PICmicro MCU for

serial programming. RB6 is the clock line and RB7 is

the data line. RB6 is driven by the programmer. RB7 is

a bidirectional pin that is driven by the programmer

when programming, and driven by the PICmicro MCU

when verifying. These pins must be isolated from the

rest of the application circuit so as not to affect the sig-

nals during programming. You must take into consider-

ation the output impedance of the programmer when

isolating RB6 and RB7 from the rest of the circuit. This

isolation circuit must account for RB6 being an input on

the PICmicro MCU, and for RB7 being bidirectional

(can be driven by both the PICmicro MCU and the pro-

grammer). For instance, PRO MATE® II has an output

impedance of 1k¾. If the design permits, these pins

should not be used by the application. This is not the

case with most applications so it is recommended that

the designer evaluate whether these signals need to be

buffered. As a designer, you must consider what type

of circuitry is connected to RB6 and RB7 and then

make a decision on how to isolate these pins. Figure 1

does not show any circuitry to isolate RB6 and RB7 on

the application circuit because this is very application

dependent.

The total capacitance on the programming pins affects

the rise rates of these signals as they are driven out of

the programmer. Typical circuits use several hundred

microfarads of capacitance on VDD which helps to

dampen noise and ripple. However, this capacitance

requires a fairly strong driver in the programmer to

meet the rise rate timings for VDD. Most programmers

are designed to simply program the PICmicro MCU

itself and don’t have strong enough drivers to power the

application circuit. One solution is to use a driver board

between the programmer and the application circuit.

The driver board requires a separate power supply that

is capable of driving the VPP and VDD pins with the

correct rise rates and should also provide enough cur-

rent to power the application circuit. RB6 and RB7 are

not buffered on this schematic but may require buffer-

ing depending upon the application. A sample driver

board schematic is shown in Appendix A.

The Microchip programming specification states that

the device should be programmed at 5V. Special con-

siderations must be made if your application circuit

operates at 3V only. These considerations may include

totally isolating the PICmicro MCU during program-

ming. The other issue is that the device must be veri-

fied at the minimum and maximum voltages at which

the application circuit will be operating. For instance, a

battery operated system may operate from three 1.5V

cells giving an operating voltage range of 2.7V to 4.5V.

The programmer must program the device at 5V and

must verify the program memory contents at both 2.7V

and 4.5V to ensure that proper programming margins

have been achieved. This ensures the PICmicro MCU

option over the voltage range of the system.

This final issue deals with the oscillator circuit on the

application board. The voltage on MCLR/VPP must rise

to the specified program mode entry voltage before the

device executes any code. The crystal modes available

on the PICmicro MCU are not affected by this issue

because the Oscillator Start-up Timer waits for 1024

oscillations before any code is executed. However, RC

oscillators do not require any startup time and, there-

fore, the Oscillator Startup Timer is not used. The pro-

grammer must drive MCLR/VPP to the program mode

entry voltage before the RC oscillator toggles four

times. If the RC oscillator toggles four or more times,

the program counter will be incremented to some value

X. Now when the device enters programming mode,

the program counter will not be zero and the program-

mer will start programming your code at an offset of X.

There are several alternatives that can compensate for

a slow rise rate on MCLR/VPP. The first method would

be to not populate the R, program the device, and then

insert the R. The other method would be to have the

programming interface drive the OSC1 pin of the

PICmicro MCU to ground while programming. This will

prevent any oscillations from occurring during pro-

gramming.

Now all that is left is how to connect the application cir-

cuit to the programmer. This depends a lot on the

programming environment and will be discussed in that

section.

Programmer

The second consideration is the programmer.

PIC16CXXX MCUs only use serial programming and

therefore all programmers supporting these devices

will support ICSP. One issue with the programmer is the

drive capability. As discussed before, it must be able to

provide the specified rise rates on the ICSP signals and

also provide enough current to power the application

circuit. Appendix A shows an example driver board.

This driver schematic does not show any buffer cir-

cuitry for RB6 and RB7. It is recommended that an

evaluation be performed to determine if buffering is

required. Another issue with the programmer is what

VDD levels are used to verify the memory contents of

the PICmicro MCU. For instance, the PRO MATE II ver-

ifies program memory at the minimum and maximum

VDD levels for the specified device and is therefore con-

sidered a production quality programmer. On the other

hand, the PICSTART® Plus only verifies at 5V and is for

prototyping use only. The Microchip programming

specifications state that the program memory contents

should be verified at both the minimum and maximum

VDD levels that the application circuit will be operating.

This implies that the application circuit must be able to

handle the varying VDD voltages.

Note: The driver board design MUST be tested

in the user's application to determine the

effects of the application circuit on the

programming signals timing. Changes

may be required if the application places

a significant load on VDD, VPP, RB6 OR

RB7.
apVNMNP_Jé~ÖÉ=OJNM Preliminary =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB013
There are also several third party programmers that are

available. You should select a programmer based on

the features it has and how it fits into your programming

environment. The Microchip Development Systems

Ordering Guide (DS30177) provides detailed informa-

tion on all our development tools. The Microchip Third

Party Guide (DS00104) provides information on all of

our third party tool developers. Please consult these

two references when selecting a programmer. Many

options exist including serial or parallel PC host con-

nection, stand-alone operation, and single or gang pro-

grammers. Some of the third party developers include

Advanced Transdata Corporation, BP Microsystems,

Data I/O, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of

programmer used, the programmer cable length, and

the application circuit interface. Some programmers

are well suited for a manual assembly line while others

are desirable for an automated assembly line. You may

want to choose a gang programmer to program multi-

ple systems at a time.

The physical distance between the programmer and

the application circuit affects the load capacitance on

each of the programming signals. This will directly

affect the drive strength needed to provide the correct

signal rise rates and current. This programming cable

must also be as short as possible and properly

terminated and shielded, or the programming signals

may be corrupted by ringing or noise.

Finally, the application circuit interface to the program-

mer depends on the size constraints of the application

circuit itself and the assembly line. A simple header can

be used to interface the application circuit to the pro-

grammer. This might be more desirable for a manual

assembly line where a technician plugs the

programmer cable into the board. A different method is

the use of spring loaded test pins (commonly referred

to as pogo pins). The application circuit has pads on the

board for each of the programming signals. Then there

is a fixture that has pogo pins in the same configuration

as the pads on the board. The application circuit or fix-

ture is moved into position such that the pogo pins

come into contact with the board. This method might be

more suitable for an automated assembly line.

After taking into consideration the issues with the appli-

cation circuit, the programmer, and the programming

environment, anyone can build a high quality, reliable

manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and

serialization. If program memory permits, it would be

cheaper and more reliable to store calibration con-

stants in program memory instead of using an external

serial EEPROM. For example, your system has a ther-

mistor which can vary from one system to another.

Storing some calibration information in a table format

allows the microcontroller to compensate in software

for external component tolerances. System cost can be

reduced without affecting the required performance of

the system by using software calibration techniques.

But how does this relate to ICSP? The PICmicro MCU

has already been programmed with firmware that per-

forms a calibration cycle. The calibration data is trans-

ferred to a calibration fixture. When all calibration data

has been transferred, the fixture places the PICmicro

MCU in programming mode and programs the

PICmicro MCU with the calibration data. Application

note AN656, In-Circuit Serial Programming of Calibra-

tion Parameters Using a PICmicro Microcontroller,

shows exactly how to implement this type of calibration

data programming.

The other benefit of ICSP is serialization. Each individ-

ual system can be programmed with a unique or ran-

dom serial number. One such application of a unique

serial number would be for security systems. A typical

system might use DIP switches to set the serial num-

ber. Instead, this number can be burned into program

memory, thus reducing the overall system cost and

lowering the risk of tampering.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being

reprogrammed, but the PICmicro MCU architecture

gives you this flexibility provided the size of your firm-

ware is at least half that of the desired device and the

device is not code protected. If your target device does

not have enough program memory, Microchip provides

a wide spectrum of devices from 0.5K to 8K program

memory with the same set of peripheral features that

will help meet the criteria.

The PIC16CXXX microcontrollers have two vectors,

reset and interrupt, at locations 0x0000 and 0x0004.

When the PICmicro MCU encounters a reset or inter-

rupt condition, the code located at one of these two

locations in program memory is executed. The first list-

ing of Example 1 shows the code that is first pro-

grammed into the PICmicro MCU. The second listing of

Example 1 shows the code that is programmed into the

PICmicro MCU for the second time.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK Preliminary apVNMNP_Jé~ÖÉ=OJNN

TB013
EXAMPLE 1: PROGRAMMING CYCLE LISTING FILES
First Program Cycle Second Program Cycle

Prog Opcode Assembly |Prog Opcode Assembly
Mem Instruction |Mem Instruction

0000 2808 goto Main ;Main loop |0000 0000 nop
0001 3FFF <blank> ;at 0x0008 |0001 2860 goto Main ;Main now
0002 3FFF <blank> |0002 3FFF <blank> ;at 0x0060
0003 3FFF <blank> |0003 3FFF <blank>
0004 2848 goto ISR ;ISR at |0004 0000 nop
0005 3FFF <blank> ;0x0048 |0005 28A8 goto ISR ;ISR now at
0006 3FFF <blank> |0006 3FFF <blank> ;0x00A8
0007 3FFF <blank> |0007 3FFF <blank>
0008 1683 bsf STATUS,RP0 | 0008 1683 bsf STATUS,RP0
0009 3007 movlw 0x07 |0009 3007 movlw 0x07
000A 009F movwf ADCON1 |000A 009F movwf ADCON1
 . | .
 . | .
 . | .
0048 1C0C btfss PIR1,RBIF | 0048 1C0C btfss PIR1,RBIF
0049 284E goto EndISR |0049 284E goto EndISR
004A 1806 btfsc PORTB,0 |004A 1806 btfsc PORTB,0
 . | .
 . | .
 . | .
0060 3FFF <blank> |0060 1683 bsf STATUS,RP0
0061 3FFF <blank> |0061 3005 movlw 0x05
0062 3FFF <blank> |0062 009F movwf ADCON1
 . | .
 . | .
 . | .
00A8 3FFF <blank> |00A8 1C0C btfss PIR1,RBIF
00A9 3FFF <blank> |00A9 28AE goto EndISR
00AA 3FFF <blank> |00AA 1806 btfsc PORTB,0
 . | .
 . | .
 . | .

apVNMNP_Jé~ÖÉ=OJNO Preliminary =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB013
The example shows that to program the PICmicro MCU

a second time the memory location 0x0000, originally

goto Main (0x2808), is reprogrammed to all 0’s which
happens to be a nop instruction. This location cannot

be reprogrammed to the new opcode (0x2860)

because the bits that are 0’s cannot be reprogrammed

to 1’s, only bits that are 1’s can be reprogrammed to

0’s. The next memory location 0x0001 was originally

blank (all 1’s) and now becomes a goto Main
(0x2860). When a reset condition occurs, the PICmicro

MCU executes the instruction at location 0x0000 which

is the nop, a completely benign instruction, and then
executes the goto Main to start the execution of code.
The example also shows that all program memory loca-

tions after 0x005A are blank in the original program so

that the second time the PICmicro MCU is pro-

grammed, the revised code can be programmed at

these locations. The same descriptions can be given

for the interrupt vector at location 0x0004.

This method changes slightly for PICmicro MCUs with

>2K words of program memory. Each of the goto
Main and goto ISR instructions are replaced by the
following code segments due to paging on devices with

>2K words of program memory.

movlw <page> movlw <page>
movwf PCLATH movwf PCLATH
goto Main goto ISR

Now your one time programmable PICmicro MCU is

exhibiting more EEPROM- or Flash-like qualities.

CONCLUSION

Microchip Technology Inc. is committed to supporting

your ICSP needs by providing you with our many years

of experience and expertise in developing ICSP

solutions. Anyone can create a reliable ICSP program-

ming station by coupling our background with some

forethought to the circuit design and programmer

selection issues previously mentioned. Your local

Microchip representative is available to answer any

questions you have about the requirements for ICSP.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK Preliminary apVNMNP_Jé~ÖÉ=OJNP

TB013
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1

V
m
m
_
O
U
T

T
O
 C
IR
C
U
IT

 3 2
 1

41
U
1
A

T
L
E
2
1
4
4
A

R
9

1
0
0

R
9

1
0
0

V
C
C

Q
1

2
N
3
9
0
6

R
1
0

1
0
0

R
2

3
3
k

 5 6
 7

U
1
B

T
L
E
2
1
4
4
A

V
`
`

V
C
C

1
5
V

E
X
T
E
R
N
A
L
 P
O
W
E
R
 S
U
P
P
L
Y

R
1
2

1
0
0
k

V
m
m
_
IN

F
R
O
M

P
R
O
G
R
A
M
M
E
R

C
1

1
N
F

D
1

1
2
.7
V

Q
2

2
N
2
2
2
2

R
1
3

5
k

Q
3

2
N
3
9
0
6

C
3

0
.1
µ
F

V
a
a
_
O
U
T

R
1
5

1
T
O
 C
IR
C
U
IT

C
6

0
.1
µ
F

 1
0

 9
 8

U
1
C

T
L
E
2
1
4
4
A

V
C
C

R
1
8

1
0
0

R
1
7

1
0
0

Q
4

2
N
2
2
2
2

R
2
2

5
k

R
1
9

1
0
0

C
4

1
N
F

D
2

6
.2
V

V
a
a
_
IN

 1
2

 1
3

1
4

U
1
D

T
L
E
2
1
4
4
A

R
4

1
0
k

R
2
1

1
0
0
k

F
R
O
M

P
R
O
G
R
A
M
M
E
R

R
B
6
_
IN

G
N
D
_
IN

G
N
D
_
O
U
T

F
R
O
M

P
R
O
G
R
A
M
M
E
R

F
R
O
M

P
R
O
G
R
A
M
M
E
R

T
O
 C
IR
C
U
IT

R
B
6
_
O
U
T

R
B
7
_
IN

F
R
O
M

P
R
O
G
R
A
M
M
E
R

T
O
 C
IR
C
U
IT

R
B
7
_
O
U
T

T
O
 C
IR
C
U
IT

N
o
te
:

T
h
e
 d
ri
v
e
r
b
o
a
rd
 d
e
s
ig
n
 M

U
S
T
 b
e
 t
e
s
te
d
 i
n
 t
h
e
 u
s
e
r'
s

a
p
p
lic
a
ti
o
n
 t
o
 d
e
te
rm

in
e
 t
h
e
 e
ff
e
c
ts
 o
f
th
e
 a
p
p
lic
a
ti
o
n

c
ir
c
u
it

o
n

th
e

p
ro
g
ra
m
m
in
g

s
ig
n
a
ls

ti
m
in
g
.
C
h
a
n
g
e
s

m
a
y
 b
e
 r
e
q
u
ir
e
d
 i
f
th
e
 a
p
p
lic
a
ti
o
n
 p
la
c
e
s
 a
 s
ig
n
if
ic
a
n
t

lo
a
d
 o
n
 V
d
d
,
V
p
p
,
R
B
6
 o
r
R
B
7
.

*
s
e
e
 t
e
x
t
in
 t
e
c
h
n
ic
a
l
b
ri
e
f.

*
s
e
e
 t
e
x
t
in
 t
e
c
h
n
ic
a
l
b
ri
e
f.
apVNMNP_Jé~ÖÉ=OJNQ Preliminary =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB015
How to Implement ICSP™ Using PIC17CXXX OTP MCUs
INTRODUCTION

PIC17CXXX microcontroller (MCU) devices can be

serially programmed using an RS-232 or equivalent

serial interface. As shown in Figure 1, using just three

pins, the PIC17CXXX can be connected to an external

interface and programmed. In-Circuit Serial Program-

ming (ICSP™) allows for a greater flexibility in an appli-

cation as well as a faster time to market for the user's

product.

This technical brief will demonstrate the practical

aspects associated with ICSP using the PIC17CXXX. It

will also demonstrate some key capabilities of OTP

devices when used in conjunction with ICSP.

Implementation

The PIC17CXXX devices have special instructions,

which enables the user to program and read the

PIC17CXXX's program memory. The instructions are

TABLWT and TLWT which implement the program mem-
ory write operation and TABLRD and TLRD which per-
form the program memory read operation. For more

details, please check the In-Circuit Serial Programming

for PIC17CXXX OTP Microcontrollers Specification

(DS30273), PIC17C4X data sheet (DS30412) and

PIC17C75X data sheet (DS30264).

When doing ICSP, the PIC17CXXX runs a boot code,

which configures the USART port and receives data

serially through the RX line. This data is then pro-

grammed at the address specified in the serial data

string. A high voltage (about 13V) is required for the

EPROM cell to get programmed, and this is usually

supplied by the programming header as shown in

Figure 1 and Figure 2. The PIC17CXXX's boot code

enables and disables the high voltage line using a ded-

icated I/O line.

FIGURE 1: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING USING TABLE WRITE

INSTRUCTIONS

Author: Stan D’Souza

Microchip Technology Inc.

PIC17CXXX

Data
Memory

Program
Memory

Data L
Data H

Boot
Code

USART Level Converter

In-Circuit
Programming

Connector

I/O
13V Enable

SYSTEM BOARD

VPP

13V

RX

TX

Data H:Data L

PRO MATE and PICSTART are registered trademarks and ICSP is a trademark of Microchip Technology Inc.
 2003 Microchip Technology Inc. Preliminary DS91015B-page 2-15

TB015
FIGURE 2: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING SCHEMATIC

ICSP Boot Code

The boot code is normally programmed, into the

PIC17CXX device using a PRO MATE® or PICSTART®

Plus or any third party programmer. As depicted in the

flowchart in Figure 4, on power-up, or a reset, the pro-

gram execution always vectors to the boot code. The

boot code is normally located at the bottom of the pro-

gram memory space e.g. 0x700 for a PIC17C42A (Fig-

ure 3).

Several methods could be used to reset the

PIC17CXXX when the ICSP header is connected to the

system board. The simplest method, as shown in

Figure 2, is to derive the system 5V, from the 13V sup-

plied by the ICSP header. It is quite common in manu-

facturing lines, to have system boards programmed

with only the boot code ready and available for testing,

calibration or final programming. The ICSP header

would thus supply the 13V to the system and this 13V

would then be stepped down to supply the 5V required

to power the system. Please note that the 13V supply

should have enough drive capability to supply power to

the system as well as maintain the programming volt-

age of 13V.

The first action of the boot code (as shown in flowchart

Figure 4) is to configure the USART to a known baud

rate and transmit a request sequence to the ICSP host

system. The host immediately responds with an

acknowledgment of this request. The boot code then

gets ready to receive ICSP data. The host starts send-

ing the data and address byte sequences to the

PIC17CXXX. On receiving the address and data

information, the 16-bit address is loaded into the

TBLPTR registers and the 16-bit data is loaded into the

TABLAT registers. The RA2 pin is driven low to enable

13V at MCLR. The PIC17CXXX device then executes

a table write instruction. This instruction in turn causes

a long write operation, which disables further code exe-

cution. Code execution is resumed when an internal

interrupt occurs. This delay ensures that the program-

ming pulse width of 1 ms (max.) is met. Once a location

is written, RA2 is driven high to disable further writes

and a verify operation is done using the Table read

instruction. If the result is good, an acknowledge is sent

to the host. This process is repeated till all desired loca-

tions are programmed.

In normal operation, when the ICSP header is not con-

nected, the boot code would still execute and the

PIC17CXXX would send out a request to the host.

However it would not get a response from the host, so

it would abort the boot code and start normal code

execution.

FIGURE 3: BOOT CODE EXAMPLE

FOR PIC17C42A

PIC17CXXX

VDD

MCLR

RA2

RX

VSS

+5V

MAX232

2N3905 13V

+5V

SERIAL PORT TX

SERIAL PORT RX
TX

7805

Programming Header

RESET Vector

Boot Code

Program Memory

0x700

0x7FF
DS91015B-page 2-16 Preliminary  2003 Microchip Technology Inc.

How to Implement ICSP™ Using PIC17CXXX OTP MCUs
FIGURE 4: FLOWCHART FOR ICSP BOOT CODE

Start

Received Host’s

Configure USART
and send request

Goto Boot Code

Prepare to receive
ICSP data

Do Table Write
operation

Received Address
and Data info?

Last Data/Address

Signal Programming
Error

END

sequence?

ACK?
Time-out complete?

Start Code
Execution

Interrupt?

Read Program
Location

Program location

verified correctly?

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

YesNo
 2003 Microchip Technology Inc. Preliminary DS91015B-page 2-17

TB015
USING THE ICSP FEATURE ON
PIC17CXXX OTP DEVICES

The ICSP feature is a very powerful tool when used in

conjunction with OTP devices.

Saving Calibration Information Using

ICSP

One key use of ICSP is to store calibration constants or

parameters in program memory. It is quite common to

interface a PIC17CXXX device to a sensor. Accurate,

pre-calibrated sensors can be used, but they are more

expensive and have long lead times. Un-calibrated

sensors on the other hand are inexpensive and readily

available. The only caveat is that these sensors have to

be calibrated in the application. Once the calibration

constants have been determined, they would be unique

to a given system, so they have to be saved in program

memory. These calibration parameters/constants can

then be retrieved later during program execution and

used to improve the accuracy of low cost un-calibrated

sensors. ICSP thus offers a cost reduction path for the

end user in the application.

Saving Field Calibration Information Using

ICSP

Sensors typically tend to drift and lose calibration over

time and usage. One expensive solution would be to

replace the sensor with a new one. A more cost effec-

tive solution however, is to re-calibrated the system and

save the new calibration parameter/constants into the

PIC17CXXX devices using ICSP. The user program

however has to take into account certain issues:

1. Un-programmed or blank locations have to be

reserved at each calibration constant location in

order to save new calibration parameters/con-

stants.

2. The old calibration parameters/constants are all

programmed to 0, so the user program will have

to be "intelligent" and differentiate between blank

(0xFFFF), zero (0x0000), and programmed locations.

Figure 5 shows how this can be achieved.

Programming Unique Serial Numbers Using

ICSP

There are applications where each system needs to

have a unique and sometimes random serial number.

Example: security devices. One common solution is to

have a set of DIP switches which are then set to a

unique value during final test. A more cost effective

solution however would be to program unique serial

numbers into the device using ICSP. The user applica-

tion can thus eliminate the need for DIP switches and

subsequently reduce the cost of the system.

FIGURE 5: FIELD CALIBRATION USING ICSP

Factory Settings Field Calibrate #1 Field Calibrate #2

Parameter 1.1

0xFFFF

0xFFFF

0xFFFF

0xFFFF

0xFFFF

0xFFFF

Parameter 2.1

~

Parameter 1.3

0xFFFF

0xFFFF

Parameter 2.3

Parameter 1.2

0xFFFF

0xFFFF

0xFFFF

0xFFFF

Parameter 2.2

0x0000

0x0000

0x0000

0x0000

0x0000

0x0000

~
~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

DS91015B-page 2-18 Preliminary  2003 Microchip Technology Inc.

How to Implement ICSP™ Using PIC17CXXX OTP MCUs
Code Updates in the Field Using ICSP

With fast time to market it is not uncommon to see

application programs which need to be updated or cor-

rected for either enhancements or minor errors/bugs. If

ROM parts were used, updates would be impossible

and the product would either become outdated or

recalled from the field. A more cost effective solution

is to use OTP devices with ICSP and program them in

the field with the new updates. Figure 6 shows an

example where the user has allowed for one field

update to his program.

Here are some of the issues which need to be

addressed:

1. The user has to reserve sufficient blank memory

to fit his updated code.

2. At least one blank location needs to be saved at

the reset vector as well as for all the interrupts.

3. Program all the old "goto" locations (located at

the reset vector and the interrupts vectors) to 0

so that these instructions execute as NOPs.

4. Program new "goto" locations (at the reset vec-

tor and the interrupt vectors) just below the old

"goto" locations.

5. Finally, program the new updated code in the

blank memory space.

CONCLUSION

ICSP is a very powerful feature available on the

PIC17CXXX devices. It offers tremendous design flex-

ibility to the end user in terms of saving calibration con-

stants and updating code in final production as well as

in the field, thus helping the user design a low-cost and

fast time-to-market product.

FIGURE 6: CODE UPDATES USING ICSP

Goto Boot

Production Program Code Update #1

Goto Boot0x0000 0x0000

Main

Main1

Boot

Goto Main1

0xFFFF

0xFFFF

Goto Main

Main

Main1

Main2

Boot

0x0000

Goto Main2

0xFFFF

Goto Main

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

~
~

 2003 Microchip Technology Inc. Preliminary DS91015B-page 2-19

TB015
NOTES:
DS91015B-page 2-20 Preliminary  2003 Microchip Technology Inc.

TB016
How to Implement ICSP™ Using PIC16F8X FLASH MCUs
INTRODUCTION

In-Circuit Serial Programming™ (ICSP) with

PICmicro® FLASH microcontrollers (MCU) is not only a

great way to reduce your inventory overhead and time-

to-market for your product, but also to easily provide

field upgrades of firmware. By assembling your product

with a Microchip FLASH-based MCU, you can stock

the shelf with one system. When an order has been

placed, these units can be programmed with the latest

revision of firmware, tested, and shipped in a very short

time. This type of manufacturing system can also facil-

itate quick turnarounds on custom orders for your prod-

uct. You don’t have to worry about scrapped inventory

because of the FLASH-based program memory. This

gives you the advantage of upgrading the firmware at

any time to fix those “features” that pop up from time to

time.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take

to implement it in your application? There are three

main components of an ICSP system.

These are the: Application Circuit, Programmer and

Programming Environment.

Application Circuit

The application circuit must be designed to allow all the

programming signals to be directly connected to the

PICmicro MCUs. Figure 1 shows a typical circuit that is

a starting point for when designing with ICSP. The

application must compensate for the following issues:

1. Isolation of the MCLR/VPP pin from the rest of

the circuit.

2. Isolation of pins RB6 and RB7 from the rest of

the circuit.

3. Capacitance on each of the VDD, MCLR/VPP,

RB6, and RB7 pins.

4. Minimum and maximum operating voltage for

V
DD
.

5. PICmicro Oscillator.

6. Interface to the programmer.

The MCLR/VPP pin is normally connected to an RC cir-

cuit. The pull-up resistor is tied to VDD and a capacitor

is tied to ground. This circuit can affect the operation of

ICSP depending on the size of the capacitor. It is, there-

fore, recommended that the circuit in Figure 1 be used

when an RC is connected to MCLR/VPP. The diode

should be a Schottky-type device. Another issue with

MCLR/VPP is that when the PICmicro MCU device is

programmed, this pin is driven to approximately 13V

and also to ground. Therefore, the application circuit

must be isolated from this voltage provided by the

programmer.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Rodger Richey

Microchip Technology Inc.

Application PCB

PIC16F8X

MCLR/smm

Vdd

Vss

RB7

RB6

Vdd Vdd

To application circuit

Isolation circuits

ICSP Connector

PICmicro, PRO MATE, and PICSTART are registered trademarks of Microchip Technology Inc.
In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Inc.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apVNMNS_Jé~ÖÉ=OJON

TB016
Pins RB6 and RB7 are used by the PICmicro MCU for

serial programming. RB6 is the clock line and RB7 is

the data line. RB6 is driven by the programmer. RB7 is

a bidirectional pin that is driven by the programmer

when programming, and driven by the PICmicro MCU

when verifying. These pins must be isolated from the

rest of the application circuit so as not to affect the sig-

nals during programming. You must take into consider-

ation the output impedance of the programmer when

isolating RB6 and RB7 from the rest of the circuit. This

isolation circuit must account for RB6 being an input on

the PICmicro MCU and for RB7 being bidirectional (can

be driven by both the PICmicro MCU and the program-

mer). For instance, PRO MATE® II has an output

impedance of 1k¾. If the design permits, these pins

should not be used by the application. This is not the

case with most applications so it is recommended that

the designer evaluate whether these signals need to be

buffered. As a designer, you must consider what type

of circuitry is connected to RB6 and RB7 and then

make a decision on how to isolate these pins. Figure 1

does not show any circuitry to isolate RB6 and RB7 on

the application circuit because this is very application

dependent.

The total capacitance on the programming pins affects

the rise rates of these signals as they are driven out of

the programmer. Typical circuits use several hundred

microfarads of capacitance on VDD which helps to

dampen noise and ripple. However, this capacitance

requires a fairly strong driver in the programmer to

meet the rise rate timings for VDD. Most programmers

are designed to simply program the PICmicro MCU

itself and don’t have strong enough drivers to power the

application circuit. One solution is to use a driver board

between the programmer and the application circuit.

The driver board requires a separate power supply that

is capable of driving the VPP and VDD pins with the cor-

rect rise rates and should also provide enough current

to power the application circuit. RB6 and RB7 are not

buffered on this schematic but may require buffering

depending upon the application. A sample driver board

schematic is shown in Appendix A.

The Microchip programming specification states that

the device should be programmed at 5V. Special con-

siderations must be made if your application circuit

operates at 3V only. These considerations may include

totally isolating the PICmicro MCU during program-

ming. The other issue is that the device must be veri-

fied at the minimum and maximum voltages at which

the application circuit will be operating. For instance, a

battery operated system may operate from three 1.5V

cells giving an operating voltage range of 2.7V to 4.5V.

The programmer must program the device at 5V and

must verify the program memory contents at both 2.7V

and 4.5V to ensure that proper programming margins

have been achieved. This ensures the PICmicro MCU

option over the voltage range of the system.

This final issue deals with the oscillator circuit on the

application board. The voltage on MCLR/VPP must rise

to the specified program mode entry voltage before the

device executes any code. The crystal modes available

on the PICmicro MCU are not affected by this issue

because the Oscillator Start-up Timer waits for 1024

oscillations before any code is executed. However, RC

oscillators do not require any startup time and, there-

fore, the Oscillator Startup Timer is not used. The pro-

grammer must drive MCLR/VPP to the program mode

entry voltage before the RC oscillator toggles four

times. If the RC oscillator toggles four or more times,

the program counter will be incremented to some value

X. Now when the device enters programming mode,

the program counter will not be zero and the program-

mer will start programming your code at an offset of X.

There are several alternatives that can compensate for

a slow rise rate on MCLR/VPP. The first method would

be to not populate the R, program the device, and then

insert the R. The other method would be to have the

programming interface drive the OSC1 pin of the

PICmicro MCU to ground while programming. This will

prevent any oscillations from occurring during pro-

gramming.

Now all that is left is how to connect the application cir-

cuit to the programmer. This depends a lot on the

programming environment and will be discussed in that

section.

Programmer

The second consideration is the programmer.

PIC16F8X MCUs only use serial programming and

therefore all programmers supporting these devices

will support ICSP. One issue with the programmer is the

drive capability. As discussed before, it must be able to

provide the specified rise rates on the ICSP signals and

also provide enough current to power the application

circuit. Appendix A shows an example driver board.

This driver schematic does not show any buffer cir-

cuitry for RB6 and RB7. It is recommended that an

evaluation be performed to determine if buffering is

required. Another issue with the programmer is what

VDD levels are used to verify the memory contents of

the PICmicro MCU. For instance, the PRO MATE II ver-

ifies program memory at the minimum and maximum

VDD levels for the specified device and is therefore con-

sidered a production quality programmer. On the other

hand, the PICSTART® Plus only verifies at 5V and is for

prototyping use only. The Microchip programming

specifications state that the program memory contents

should be verified at both the minimum and maximum

VDD levels that the application circuit will be operating.

This implies that the application circuit must be able to

handle the varying VDD voltages.

Note: The driver board design MUST be tested

in the user's application to determine the

effects of the application circuit on the

programming signals timing. Changes

may be required if the application places

a significant load on Vdd, VPP, RB6 or

RB7.
apVNMNS_Jé~ÖÉ=OJOO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

TB016
There are also several third party programmers that are

available. You should select a programmer based on

the features it has and how it fits into your programming

environment. The Microchip Development Systems

Ordering Guide (DS30177) provides detailed informa-

tion on all our development tools. The Microchip Third

Party Guide (DS00104) provides information on all of

our third party tool developers. Please consult these

two references when selecting a programmer. Many

options exist including serial or parallel PC host con-

nection, stand-alone operation, and single or gang pro-

grammers. Some of the third party developers include

Advanced Transdata Corporation, BP Microsystems,

Data I/O, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of

programmer used, the programmer cable length, and

the application circuit interface. Some programmers

are well suited for a manual assembly line while others

are desirable for an automated assembly line. You may

want to choose a gang programmer to program multi-

ple systems at a time.

The physical distance between the programmer and

the application circuit affects the load capacitance on

each of the programming signals. This will directly

affect the drive strength needed to provide the correct

signal rise rates and current. This programming cable

must also be as short as possible and properly termi-

nated and shielded or the programming signals may be

corrupted by ringing or noise.

Finally, the application circuit interface to the program-

mer depends on the size constraints of the application

circuit itself and the assembly line. A simple header can

be used to interface the application circuit to the pro-

grammer. This might be more desirable for a manual

assembly line where a technician plugs the

programmer cable into the board. A different method is

the use of spring loaded test pins (commonly referred

to as pogo pins). The application circuit has pads on the

board for each of the programming signals. Then there

is a fixture that has pogo pins in the same configuration

as the pads on the board. The application circuit or fix-

ture is moved into position such that the pogo pins

come into contact with the board. This method might be

more suitable for an automated assembly line.

After taking into consideration the issues with the appli-

cation circuit, the programmer, and the programming

environment, anyone can build a high quality, reliable

manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and

serialization. If program memory permits, it would be

cheaper and more reliable to store calibration con-

stants in program memory instead of using an external

serial EEPROM. For example, your system has a ther-

mistor which can vary from one system to another.

Storing some calibration information in a table format

allows the microcontroller to compensate in software

for external component tolerances. System cost can be

reduced without affecting the required performance of

the system by using software calibration techniques.

But how does this relate to ICSP? The PICmicro MCU

has already been programmed with firmware that per-

forms a calibration cycle. The calibration data is trans-

ferred to a calibration fixture. When all calibration data

has been transferred, the fixture places the PICmicro

MCU in programming mode and programs the

PICmicro MCU with the calibration data. Application

note AN656, In-Circuit Serial Programming of Calibra-

tion Parameters Using a PICmicro Microcontroller,

shows exactly how to implement this type of calibration

data programming.

The other benefit of ICSP is serialization. Each individ-

ual system can be programmed with a unique or ran-

dom serial number. One such application of a unique

serial number would be for security systems. A typical

system might use DIP switches to set the serial num-

ber. Instead, this number can be burned into program

memory thus reducing the overall system cost and low-

ering the risk of tampering.

Field Programming of FLASH PICmicro MCUs

With the ISP interface circuitry already in place, these

FLASH-based PICmicro MCUs can be easily repro-

grammed in the field. These FLASH devices allow you

to reprogram them even if they are code protected. A

portable ISP programming station might consist of a

laptop computer and programmer. The technician

plugs the ISP interface cable into the application circuit

and downloads the new firmware into the PICmicro

MCU. The next thing you know the system is up and

running without those annoying “bugs”. Another

instance would be that you want to add an additional

feature to your system. All of your current inventory can

be converted to the new firmware and field upgrades

can be performed to bring your installed base of sys-

tems up to the latest revision of firmware.

CONCLUSION

Microchip Technology Inc. is committed to supporting

your ICSP needs by providing you with our many years

of experience and expertise in developing ICSP

solutions. Anyone can create a reliable ICSP program-

ming station by coupling our background with some

forethought to the circuit design and programmer

selection issues previously mentioned. Your local

Microchip representative is available to answer any

questions you have about the requirements for ICSP.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apVNMNS_Jé~ÖÉ=OJOP

TB016
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1
V
m
m
_
O
U
T

T
O
 C
IR
C
U
IT

 3 2
 1

41
U
1
A

T
L
E
2
1
4
4
A

R
9

1
0
0

R
9

1
0
0

V
c
cQ

1
2
N
3
9
0
6

R
1
0

1
0
0

R
2

3
3
k

 5 6
 7

U
1
B

T
L
E
2
1
4
4
A

V
c
c

V
c
c

1
5
V

E
X
T
E
R
N
A
L
 P
O
W
E
R
 S
U
P
P
L
Y

R
1
2

1
0
0
k

s
m
m
_
IN

F
R
O
M

P
R
O
G
R
A
M
M
E
R

C
1

1
N
F

D
1

1
2
.7
V

Q
2

2
N
2
2
2
2

R
1
3

5
k

Q
3

2
N
3
9
0
6

C
3

0
.1
m
F

V
a
a
_
O
U
T

R
1
5

1
T
O
 C
IR
C
U
IT

C
6

0
.1
m
F

 1
0

 9
 8

U
1
C

T
L
E
2
1
4
4
A

V
c
c

R
1
8

1
0
0

R
1
7

1
0
0

Q
4

2
N
2
2
2
2

R
2
2

5
k

R
1
9

1
0
0

C
4

1
N
F

D
2

6
.2
V

V
d
d
_
IN

 1
2

 1
3

1
4

U
1
D

T
L
E
2
1
4
4
A

R
4

1
0
k

R
2
1

1
0
0
k

F
R
O
M

P
R
O
G
R
A
M
M
E
R

R
B
6
_
IN

G
N
D
_
IN

G
N
D
_
O
U
T

F
R
O
M

P
R
O
G
R
A
M
M
E
R

F
R
O
M

P
R
O
G
R
A
M
M
E
R

T
O
 C
IR
C
U
IT

R
B
6
_
O
U
T

R
B
7
_
IN

fr
o
m

p
ro
g
ra
m
m
e
r

T
O
 C
IR
C
U
IT

R
B
7
_
O
U
T

T
o
 C
ir
c
u
it

N
o
te
:

T
h
e
 d
ri
v
e
r
b
o
a
rd
 d
e
s
ig
n
 M

U
S
T
 b
e
 t
e
s
te
d
 i
n
 t
h
e
 u
s
e
r'
s

a
p
p
lic
a
ti
o
n
 t
o
 d
e
te
rm

in
e
 t
h
e
 e
ff
e
c
ts
 o
f
th
e
 a
p
p
lic
a
ti
o
n

c
ir
c
u
it

o
n

th
e

p
ro
g
ra
m
m
in
g

s
ig
n
a
ls

ti
m
in
g
.
C
h
a
n
g
e
s

m
a
y
 b
e
 r
e
q
u
ir
e
d
 i
f
th
e
 a
p
p
lic
a
ti
o
n
 p
la
c
e
s
 a
 s
ig
n
if
ic
a
n
t

lo
a
d
 o
n
 V
d
d
,
V
P
P
,
R
B
6
 o
r
R
B
7
.

*
s
e
e
 t
e
x
t
in
 t
e
c
h
n
ic
a
l
b
ri
e
f.

*
s
e
e
 t
e
x
t
in
 t
e
c
h
n
ic
a
l
b
ri
e
f.
apVNMNS_Jé~ÖÉ=OJOQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

IN-CIRCUIT SERIAL

PROGRAMMING™ GUIDE
Section 3 – Programming Specifications
IN-CIRCUIT SERIAL PROGRAMMING FOR PIC12C5XX OTP MCUs .. 3-1

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC12C67X AND PIC12CE67X OTP MCUs 3-15

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC14000 OTP MCUs ... 3-27

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16C55X OTP MCUs .. 3-39

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16C6XX/7XX/9XX OTP MCUs 3-51

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC17C7XX OTP MCUs .. 3-71

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC18CXXX OTP MCUs .. 3-97

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F62X FLASH MCUs .. 3-135

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F8X FLASH MCUs .. 3-149

IN-CIRCUIT SERIAL PROGRAMMING FOR PIC16F8XX FLASH MCUs .. 3-165
 2003 Microchip Technology Inc. DS30277D-page 3-i

In-Circuit Serial Programming™ Guide
apPMOTTa-page 3-ii  2003 Microchip Technology Inc.

PIC12C5XX
In-Circuit Serial Programming™ for PIC12C5XX OTP MCUs
This document includes the programming

specifications for the following devices:

1.0 PROGRAMMING THE
PIC12C5XX

The PIC12C5XX can be programmed using a serial

method. Due to this serial programming, the

PIC12C5XX can be programmed while in the user’s

system, increasing design flexibility. This programming

specification applies to PIC12C5XX devices in all

packages.

1.1 Hardware Requirements

The PIC12C5XX requires two programmable power

supplies, one for VDD (2.0V to 6.5V recommended) and

one for VPP (12V to 14V). Both supplies should have a

minimum resolution of 0.25V.

1.2 Programming Mode

The Programming mode for the PIC12C5XX allows

programming of user program memory, special loca-

tions used for ID, and the configuration word for the

PIC12C5XX.

Pin Diagram

• PIC12C508 • PIC12C508A • PIC12CE518

• PIC12C509 • PIC12C509A • PIC12CE519

• rfPIC12C509AG

• rfPIC12C509AF

PDIP, SOIC, JW

8

7

6

5

1

2

3

4

saa

GP5/OSC1/CLKIN

GP4/OSC2/CLKOUT

GP3/j`io/smm

VSS

GP0

GP1

GP2/T0CKI

P
IC
1
2
C
5
X
X

P
IC
1
2
C
5
X
X
A

P
IC
1
2
C
E
5
X
X
A

CERDIP, SOIC

VSS

GP2/T0CKI
XTAL

GP1

 VDD

GP5/OSC1/CLKIN

GP3/MCLR/VPP

RFENIN

CLKOUT
PS/DATAASK

VDDRF

GP4/OSC2

LF

 2
 3
 4
 5
 6
 7
 8
 9

•1
17
16

14
13
12
11
10

15

18

r
fP
IC
1
2
C
5
0
9
A
G

GP0

ANT2

NC
VSSRF

ANT1

CERDIP, SSOP

VSS

GP2/T0CKI

DATAFSK

GP1

VDD

GP5/OSC1/CLKIN

GP3/MCLR/VPP

RFENIN

CLKOUT
PS/DATAASK

VDDRF

GP4/OSC2

LF

 2
 3
 4
 5
 6
 7
 8
 9

•1
19
18

16
15
14
13
12

17

20

r
fP
IC
1
2
C
5
0
9
A
F

GP0

NC
VSSRF

ANT2 ANT110 11

FSKOUTXTAL
 2003 Microchip Technology Inc. DS30557G-page 3-1

PIC12C5XX
2.0 PROGRAM MODE ENTRY

The Program/Verify Test mode is entered by holding

pins DB0 and DB1 low, while raising MCLR pin from VIL

to VIHH. Once in this Test mode, the user program

memory and the test program memory can be

accessed and programmed in a serial fashion. The first

selected memory location is the fuses. GP0 and GP1

are Schmitt Trigger inputs in this mode.

Incrementing the PC once (using the increment

address command), selects location 0x000 of the reg-

ular program memory. Afterwards, all other memory

locations from 0x001-01FF (PIC12C508/CE518),

0x001-03FF (PIC12C509/CE519) can be addressed

by incrementing the PC.

If the program counter has reached the last user pro-

gram location and is incremented again, the on-chip

special EPROM area will be addressed. (See Figure 2-

2 to determine where the special EPROM area is

located for the various PIC12C5XX devices.)

2.1 Programming Method

The programming technique is described in the follow-

ing section. It is designed to ensure good programming

margins. It does, however, require a variable power

supply for VCC.

2.1.1 PROGRAMMING METHOD DETAILS

Essentially, this technique includes the following steps:

1. Perform blank check at VDD = VDDMIN. Report

failure. The device may not be properly erased.

2. Program location with pulses and verify after

each pulse at VDD = VDDP:

where VDDP = VDD range required during

programming (4.5V - 5.5V).

a) Programming condition:

VPP = 13.0V to 13.25V

VDD = VDDP = 4.5V to 5.5V

VPP must be ≥ VDD + 7.25V to keep

“Programming mode” active.

b) Verify condition:

VDD = VDDP

VPP ≥ VDD + 7.5V but not to exceed 13.25V
If location fails to program after “N” pulses (sug-

gested maximum program pulses of 8), then

report error as a programming failure.

3. Once location passes “Step 2", apply 11X over

programming (i.e., apply 11 times the number of

pulses that were required to program the loca-

tion). This will insure a solid programming mar-

gin. The over programming should be made

“software programmable” for easy updates.

4. Program all locations.

5. Verify all locations (using Speed Verify mode) at

VDD = VDDMIN.

6. Verify all locations at VDD = VDDMAX.

VDDMIN is the minimum operating voltage spec.

for the part. VDDMAX is the maximum operating

voltage spec. for the part.

2.1.2 SYSTEM REQUIREMENTS

Clearly, to implement this technique, the most stringent

requirements will be that of the power supplies:

VPP: VPP can be a fixed 13.0V to 13.25V supply. It must

not exceed 14.0V to avoid damage to the pin and

should be current limited to approximately 100 mA.

VDD: 2.0V to 6.5V with 0.25V granularity. Since this

method calls for verification at different VDD values, a

programmable VDD power supply is needed.

Current Requirement: 40 mA maximum

Microchip may release devices in the future with differ-

ent VDD ranges, which make it necessary to have a

programmable VDD.

It is important to verify an EPROM at the voltages

specified in this method to remain consistent with

Microchip's test screening. For example, a PIC12C5XX

specified for 4.5V to 5.5V should be tested for proper

programming from 4.5V to 5.5V.

2.1.3 SOFTWARE REQUIREMENTS

Certain parameters should be programmable (and

therefore, easily modified) for easy upgrade.

a) Pulse width.

b) Maximum number of pulses, present limit 8.

c) Number of over-programming pulses: should be

= (A • N) + B, where N = number of pulses

required in regular programming. In our current

algorithm A = 11, B = 0.

2.2 Programming Pulse Width

Program Memory Cells: When programming one

word of EPROM, a programming pulse width (TPW) of

100 µs is recommended.

The maximum number of programming attempts

should be limited to 8 per word.

After the first successful verify, the same location should

be over-programmed with 11X over-programming.

Configuration WordW= qÜÉ= ÅçåÑáÖìê~íáçå= ïçêÇ= Ñçê

çëÅáää~íçê= ëÉäÉÅíáçåI=taq= Et~íÅÜÇçÖ= qáãÉêF= Çáë~ÄäÉ

~åÇ= ÅçÇÉ= éêçíÉÅíáçåI= ~åÇ=j`io= Éå~ÄäÉI= êÉèìáêÉë= ~

éêçÖê~ããáåÖ=éìäëÉ=ïáÇíÜ=EqmtcF=çÑ=NM=ãëK=^=ëÉêáÉë=çÑ

NMM=µë=éìäëÉë=áë=éêÉÑÉêêÉÇ=çîÉê=~=ëáåÖäÉ=NM=ãë=éìäëÉK

Note: Device must be verified at minimum and

maximum specified operating voltages as

specified in the data sheet.

Note: Any programmer not meeting the program-

mable VDD requirement and the verify at

VDDMAX and VDDMIN requirement, may

only be classified as a “prototype” or

“development” programmer, but not a

production programmer.
DS30557G-page 3-2  2003 Microchip Technology Inc.

PIC12C5XX
FIGURE 2-1: PROGRAMMING METHOD FLOW CHART

N > 8?

Start

Blank Check
@ VDD = VDDMIN

Pass?

Report Possible Erase Failure
Continue Programming

at user’s option

Program 1 Location
@ VPP = 13.0V to 13.25V

VDD = VDDP

N = N + 1
(N = # of program pulses)

Report Programming Failure

Increment PC to point to
next location, N = 0

Apply 11N additional
program pulses

Pass?

All
locations

done?

Verify all locations
@ VDD = VDDMIN

Pass? Report verify failure
@ VDDMIN

VDD = VDD max.

Verify all locations
@ VDD = VDDMAX

Pass?
Report verify failure

@ VDDMAX

Done

Yes

No

Yes

No

No

Yes

No

Yes

Yes

Yes

No

No

Now program
Configuration Word

Verify Configuration Word
@ VDDMAX & VDDMIN
 2003 Microchip Technology Inc. DS30557G-page 3-3

PIC12C5XX
FIGURE 2-2: PIC12C5XX SERIES PROGRAM MEMORY MAP IN PROGRAM/VERIFY MODE

Address

(HEX) 000

Bit Number11 0

NNN

TTT

TTT + 1

TTT + 2

TTT + 3

TTT + 3F

(FFF)

For Customer Use
(4 x 4 bit usable)

For Factory Use

Configuration Word 5 bits

0 0 ID0

0 0 ID1

0 0 ID2

0 0 ID3

User Program Memory
(NNN + 1) x 12 bit

NNN Highest normal EPROM memory address. NNN = 0x1FF for PIC12C508/CE518.
NNN = 0x3FF for PIC12C509/CE519.

TTT Start address of special EPROM area and ID locations.
Note that some versions will have an oscillator calibration value programmed at NNN.
DS30557G-page 3-4  2003 Microchip Technology Inc.

PIC12C5XX
2.3 Special Memory Locations

The highest address of program memory space is

reserved for the internal RC oscillator calibration value.

This location should not be overwritten except when

this location is blank, and it should be verified, when

programmed, that it is a MOVLW XX instruction.

The ID Locations area is only enabled if the device is in

Programming/Verify mode. Thus, in normal operation

mode, only the memory location 0x000 to 0xNNN will

be accessed and the Program Counter will just rollover

from address 0xNNN to 0x000 when incremented.

The configuration word can only be accessed immedi-

ately after MCLR going from VIL to VHH. The Program

Counter will be set to all '1's upon MCLR = VIL. Thus,

it has the value “0xFFF” when accessing the configura-

tion EPROM. Incrementing the Program Counter once

causes the Program Counter to rollover to all '0's.

Incrementing the Program Counter 4K times after

RESET (MCLR = VIL) does not allow access to the

configuration EPROM.

2.3.1 CUSTOMER ID CODE LOCATIONS

Per definition, the first four words (address TTT to

TTT + 3) are reserved for customer use. It is recom-

mended that the customer use only the four lower order

bits (bits 0 through 3) of each word and filling the eight

higher order bits with '0's.

A user may want to store an identification code (ID) in

the ID locations and still be able to read this code after

the code protection bit was programmed.

EXAMPLE 2-1: CUSTOMER CODE 0xD1E2

The Customer ID code “0xD1E2” should be stored in

the ID locations 0x200-0x203 like this (PIC12C508/

508A/CE518):

200: 0000 0000 1101
201: 0000 0000 0001
202: 0000 0000 1110
203: 0000 0000 0010

Reading these four memory locations, even with the

code protection bit programmed, would still output on

GP0 the bit sequence “1101”, “0001”, “1110”, “0010”
which is “0xD1E2”.

2.4 Program/Verify Mode

The Program/Verify mode is entered by holding pins

GP1 and GP0 low, while raising MCLR pin from VIL to

VIHH (high voltage). Once in this mode, the user pro-

gram memory and the configuration memory can be

accessed and programmed in serial fashion. The mode

of operation is serial. GP0 and GP1 are Schmitt Trigger

inputs in this mode.

The sequence that enters the device into the Program-

ming/Verify mode places all other logic into the RESET

state (the MCLR pin was initially at VIL). This means

that all I/O are in the RESET state (High impedance

inputs).

Note: All other locations in PICmicro® MCU con-

figuration memory are reserved and

should not be programmed.

Note: The MCLR pin should be raised from VIL to

VIHH within 9 ms of VDD rise. This is to

ensure that the device does not have the

PC incremented while in valid operation

range.
 2003 Microchip Technology Inc. DS30557G-page 3-5

PIC12C5XX
2.4.1 PROGRAM/VERIFY OPERATION

The GP1 pin is used as a clock input pin, and the GP0

pin is used for entering command bits and data input/

output during serial operation. To input a command, the

clock pin (GP1) is cycled six times. Each command bit

is latched on the falling edge of the clock with the Least

Significant bit (LSb) of the command being input first.

The data on pin GP0 is required to have a minimum

setup and hold time (see AC/DC specs), with respect to

the falling edge of the clock. Commands that have data

associated with them (read and load) are specified to

have a minimum delay of 1 µs between the command
and the data. After this delay, the clock pin is cycled 16

times with the first cycle being a START bit and the last

cycle being a STOP bit. Data is also input and output

LSb first. Therefore, during a read operation, the LSb

will be transmitted onto pin GP0 on the rising edge of

the second cycle, and during a load operation, the LSb

will be latched on the falling edge of the second cycle.

A minimum 1 µs delay is also specified between con-
secutive commands.

All commands are transmitted LSb first. Data words are

also transmitted LSb first. The data is transmitted on

the rising edge and latched on the falling edge of the

clock. To allow for decoding of commands and reversal

of data pin configuration, a time separation of at least

1 µs is required between a command and a data word
(or another command).

The commands that are available are listed in Table 2-1.

TABLE 2-1: COMMAND MAPPING

Command Mapping (MSb ... LSb) Data

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The clock must be disabled during in-circuit programming.
DS30557G-page 3-6  2003 Microchip Technology Inc.

PIC12C5XX
2.4.1.1 Load Data

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied, as

described previously. Because this is a 12-bit core, the

two MSb’s of the data word are ignored. A timing dia-

gram for the load data command is shown in

Figure 5-1.

2.4.1.2 Read Data

After receiving this command, the chip will transmit

data bits out of the memory currently accessed, starting

with the second rising edge of the clock input. The GP0

pin will go into Output mode on the second rising clock

edge, and it will revert back to Input mode (hi-imped-

ance) after the 16th rising edge. Because this is a 12-

bit core, the two MSb’s of the data are unused and read

as’0’. A timing diagram of this command is shown in

Figure 5-2.

2.4.1.3 Increment Address

The PC is incremented when this command is

received. A timing diagram of this command is shown

in Figure 5-3.

2.4.1.4 Begin Programming

A load data command must be given before every

begin programming command. Programming of the

appropriate memory (test program memory or user pro-

gram memory) will begin after this command is

received and decoded. Programming should be per-

formed with a series of 100 µs programming pulses. A
programming pulse is defined as the time between the

begin programming command and the end program-

ming command.

2.4.1.5 End Programming

After receiving this command, the chip stops program-

ming the memory (configuration program memory or

user program memory) that it was programming at the

time.

2.5 Programming Algorithm Requires

Variable VDD

The PIC12C5XX uses an intelligent algorithm. The

algorithm calls for program verification at VDDMIN, as

well as VDDMAX. Verification at VDDMIN guarantees

good “erase margin”. Verification at VDDMAX guaran-

tees good “program margin”.

The actual programming must be done with VDD in the

VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDDMIN = minimum operating VDD spec for the part.

VDDMAX = maximum operating VDD spec for the part.

Programmers must verify the PIC12C5XX at its speci-

fied VDDMAX and VDDMIN levels. Since Microchip may

introduce future versions of the PIC12C5XX with a

broader VDD range, it is best that these levels are user

selectable (defaults are ok).

Note: Any programmer not meeting these

requirements may only be classified as a

“prototype” or “development” programmer,

but not a “production” quality programmer.
 2003 Microchip Technology Inc. DS30557G-page 3-7

PIC12C5XX
3.0 CONFIGURATION WORD

The PIC12C5XX family members have several config-

uration bits. These bits can be programmed (reads '0'),

or left unprogrammed (reads '1'), to select various

device configurations. Figure 3-1 provides an overview

of configuration bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit

Number:
11 10 9 8 7 6 5 4 3 2 1 0

PIC12C5XX — — — — — — — MCLRE CP WDTE FOSC1 FOSC0

Äáí=11-5: Reserved: Write as '0' for mf`NO`Ruu

Äáí=4: MCLRE: Master Clear Enable bit

1 = j`io pin enabled

 0 = j`io internally connected to saa

Äáí=3: CP: Code Protect Enable bit

1 = Code memory unprotected
0 = Code memory protected

Äáí=2: WDTE, WDT Enable bit

1 = WDT enabled

0 = WDT disabled

Äáí=1-0: FOSC<1:0>, Oscillator Selection Bit

11 = External RC oscillator
10 = Internal RC oscillator
01 = XT oscillator
00 = LP oscillator
DS30557G-page 3-8  2003 Microchip Technology Inc.

PIC12C5XX
4.0 CODE PROTECTION

The program code written into the EPROM can be pro-

tected by writing to the CP bit of the configuration word.

In PIC12C5XX, it is still possible to program and read

locations 0x000 through 0x03F, after code protection.

Once code protection is enabled, all protected seg-

ments read '0's (or “garbage values”) and are pre-

vented from further programming. All unprotected

segments, including ID locations and configuration

word, read normally. These locations can be pro-

grammed.

Once code protection is enabled, all code protected

locations read 0’s. All unprotected segments, including

the internal oscillator calibration value, ID, and configu-

ration word read as normal.

4.1 Embedding Configuration Word and ID Information in the HEX File

TABLE 4-1: CODE PROTECTION

PIC12C508

To code protect:

√ (CP enable pattern: XXXXXXXX0XXX)

PIC12C508A

To code protect:

√ (CP enable pattern: XXXXXXXX0XXX)

PIC12C509

To code protect:

√ (CP enable pattern: XXXXXXXX0XXX)

To allow portability of code, the programmer is required to read the configuration word and ID locations from the HEX

file when loading the HEX file. If configuration word information was not present in the HEX file, then a simple warning

message may be issued. Similarly, while saving a HEX file, configuration word and ID information must be included.

An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x00:0x3F] Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x40:0x1FF] Read Disabled (all 0’s), Write Disabled Read Enabled, Write Enabled

ID Locations (0x200 : 0x203) Read Enabled, Write Enabled Read Enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x00:0x3F] Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x40:0x1FE] Read Disabled (all 0’s), Write Disabled Read Enabled, Write Enabled

0x1FF Oscillator Calibration Value Read Enabled, Write Enabled Read Enabled, Write Enabled

ID Locations (0x200 : 0x203) Read Enabled, Write Enabled Read Enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x00:0x3F] Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x40:0x3FF] Read Disabled (all 0’s), Write Disabled Read Enabled, Write Enabled

ID Locations (0x400 : 0x403) Read Enabled, Write Enabled Read Enabled, Write Enabled
 2003 Microchip Technology Inc. DS30557G-page 3-9

PIC12C5XX
PIC12C509A

To code protect:

√ (CP enable pattern: XXXXXXXX0XXX)

PIC12CE518

To code protect:

• (CP enable pattern: XXXXXXXX0XXX)

PIC12CE519

To code protect:

• (CP enable pattern: XXXXXXXX0XXX)

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x00:0x3F] Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x40:0x3FE] Read Disabled (all 0’s), Write Disabled Read Enabled, Write Enabled

0x3FF Oscillator Calibration Value Read Enabled, Write Enabled Read Enabled, Write Enabled

ID Locations (0x400 : 0x403) Read Enabled, Write Enabled Read Enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x00:0x3F] Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x40:0x1FE] Read Disabled (all 0’s), Write Disabled Read Enabled, Write Enabled

0x1FF Oscillator Calibration Value Read Enabled, Write Enabled Read Enabled, Write Enabled

ID Locations (0x200 : 0x203) Read Enabled, Write Enabled Read Enabled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0xFFF) Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x00:0x3F] Read Enabled, Write Enabled Read Enabled, Write Enabled

[0x40:0x3FF] Read Disabled (all 0’s), Write Disabled Read Enabled, Write Enabled

ID Locations (0x400 : 0x403) Read Enabled, Write Enabled Read Enabled, Write Enabled
DS30557G-page 3-10  2003 Microchip Technology Inc.

PIC12C5XX
4.2 Checksum

4.2.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the

PIC12C5XX memory locations and adding up the

opcodes up to the maximum user addressable location

(not including the last location which is reserved for the

oscillator calibration value), e.g., 0x1FE for the

PIC12C508/CE518. Any carry bits exceeding 16 bits

are neglected. Finally, the configuration word (appropri-

ately masked) is added to the checksum. Checksum

computation for each member of the PIC12C5XX

family is shown in Table 4-2.

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The Least Significant 16 bits of this sum are the

checksum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

The oscillator calibration value location is not used in

the above checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank

Value

0x723 at

0 and Max

Address

PIC12C508 OFF

ON

SUM[0x000:0x1FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EE20

EDF7

DC68

D363

PIC12C508A OFF

ON

SUM[0x000:0x1FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EE20

EDF7

DC68

D363

PIC12C509 OFF

ON

SUM[0x000:0x3FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20

EBF7

DA68

D163

PIC12C509A OFF

ON

SUM[0x000:0x3FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20

EBF7

DA68

D163

PIC12CE518 OFF

ON

SUM[0x000:0x1FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EE20

EDF7

DC68

D363

PIC12CE519 OFF

ON

SUM[0x000:0x3FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20

EBF7

DA68

D163

rfPIC12C509AG OFF

ON

SUM[0x000:0x3FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20

EBF7

DA68

D163

rfPIC12C509AF OFF

ON

SUM[0x000:0x3FE] + CFGW & 0x01F

SUM[0x000:0x03F] + CFGW & 0x01F + SUM(IDS)

EC20

EBF7

DA68

D163

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND
 2003 Microchip Technology Inc. DS30557G-page 3-11

PIC12C5XX
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS

TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions

Operating Temperature: +10°C ≤ q̂ ≤ +40°C, unless otherwise stated, (20°C recommended)
Operating Voltage: 4.5V ≤ saa ≤ 5.5V, unless otherwise stated.

Parameter

No.
Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)

during programming

20 mA

PD3 VDDV Supply voltage during verify VDDMIN VDDMAX V (Note 1)

PD4 VIHH1 Voltage on MCLR/VPP during

programming

12.75 13.25 V (Note 2)

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 13.5

PD6 IPP Programming supply current

(from VPP)

50 mA

PD9 VIH1 (GP1, GP0) input high level 0.8 VDD V Schmitt Trigger input

PD8 VIL1 (GP1, GP0) input low level 0.2 VDD V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH) 8.0 µs

P2 Tf MCLR fall time 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 ns

P4 Thld1 Data in hold time after clock ↓ 100 ns

P5 Tdly1 Data input not driven to next clock

input (delay required between com-

mand/data or command/command)

1.0 µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 µs

P7 Tdly3 Clock ↑ to date out valid
(during read data)

200 ns

P8 Thld0 Hold time after MCLR ↑ 2 µs

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.

2: VIHH must be greater than VDD + 4.5V to stay in Programming/Verify mode.
DS30557G-page 3-12  2003 Microchip Technology Inc.

PIC12C5XX
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Mode

0

43

0

100ns

P4

1

100ns
min.

P3

RESET

21

100ns
P8

VIHH

GP1
(Clock)

GP0
(Data) 0

MCLR/VPP

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Mode

0

43

0

100ns

P4

1

100ns
min.

P3

RESET

21

100ns

P8

VIHH

GP1
(Clock)

GP0
(Data)

0

MCLR/VPP

GP0 = Output
GP0
Input

P7

}

õ õ

MMM M M MN N

N O P Q R S N O

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

VIHH
MCLR/VPP

GP1
(Clock)

(Data)
GP0

RESET
Program/Verify Mode
 2003 Microchip Technology Inc. DS30557G-page 3-13

PIC12C5XX
NOTES:
DS30557G-page 3-14  2003 Microchip Technology Inc.

PIC12C67X AND PIC12CE67X

In-Circuit Serial ProgrammingTM for PIC12C67X and PIC12CE67X OTP MCUs
This document includes the programming

specifications for the following devices:

1.0 PROGRAMMING THE
PIC12C67X AND PIC12CE67X

The PIC12C67X and PIC12CE67X can be pro-

grammed using a serial method. In Serial mode, the

PIC12C67X and PIC12CE67X can be programmed

while in the users system. This allows for increased

design flexibility.

1.1 Hardware Requirements

The PIC12C67X and PIC12CE67X require two pro-

grammable power supplies, one for VDD (2.0V to 6.0V

recommended) and one for VPP (12V to 14V). Both

supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The Programming mode for the PIC12C67X and

PIC12CE67X allows programming of user program

memory, special locations used for ID, and the config-

uration word for the PIC12C67X and PIC12CE67X.

Pin Diagrams:

• PIC12C671

• PIC12C672

• PIC12CE673

• PIC12CE674

PDIP, SOIC, JW

8

7

6

5

1

2

3

4

P
IC
1
2
C
6
7
X

GP5/OSC1/CLKIN

GP4/OSC2/AN3/

GP3/MCLR/VPP

VDD VSS

GP0/AN0

GP1/AN1/VREF

GP2/T0CKI/
AN2/INT

CLKOUT

PDIP, JW

8

7

6

5

1

2

3

4

GP5/OSC1/CLKIN

GP4/OSC2/AN3/

GP3/MCLR/VPP

VDD VSS

GP0/AN0

GP1/AN1/VREF

GP2/T0CKI/
AN2/INT

CLKOUT

P
IC

1
2
C
E
6
7
X

 2003 Microchip Technology Inc. DS40175C-page 3-15

PIC12C67X AND PIC12CE67X
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to

0x1FFF (8K). Table 2-1 shows actual implementation

of program memory in the PIC12C67X family.

When the PC reaches the last location of the imple-

mented program memory, it will wrap around and

address a location within the physically implemented

memory (see Figure 2-1).

In Programming mode, the program memory space

extends from 0x0000 to 0x3FFF, with the first half

(0x0000-0x1FFF) being user program memory and the

second half (0x2000-0x3FFF) being configuration

memory. The PC will increment from 0x0000 to 0x1FFF

and wrap to 0x000 or 0x2000 to 0x3FFF and wrap

around to 0x2000 (not to 0x0000). Once in configura-

tion memory, the highest bit of the PC stays a '1', thus

always pointing to the configuration memory. The only

way to point to user program memory is to reset the

part and reenter Program/Verify mode, as described in

Section 2.2.

The last location of the program memory space holds

the factory programmed oscillator calibration value.

This location should not be programmed, except when

blank (a non-blank value should not cause the device

to fail a blank check). If blank, the programmer should

program it to a RETLW XX statement where “XX” is the

calibration value.

In the configuration memory space, 0x2000-0x20FF

are utilized. When in configuration memory, as in the

user memory, the 0x2000-0x2XFF segment is repeat-

edly accessed as the PC exceeds 0x2XFF (see

Figure 2-1).

A user may store identification information (ID) in four

ID locations. The ID locations are mapped in [0x2000:

0x2003].

Note 1: All other locations in PICmicro® MCU con-

figuration memory are reserved and should

not be programmed.

2: Due to the secure nature of the on-board

EEPROM memory in the PIC12CE673/674,

it can be accessed only by the user

program.

TABLE 2-1: IMPLEMENTATION OF

PROGRAM MEMORY IN THE

PIC12C67X

Device Program Memory Size

PIC12C671/

PIC12CE673

0x000 - 0x3FF (1K)

PIC12C672/

PIC12CE674

0x000 - 0x7FF (2K)
DS40175C-page 3-16  2003 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
FIGURE 2-1: PROGRAM MEMORY MAPPING

0

3FF

400

7FF

800

BFF
C00

FFF
1000

1FFF

2000

2008

2100

3FFF

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

1FF
1KW 2KW

Implemented Implemented

Implemented

Reserved

Reserved

Reserved Reserved

Reserved Reserved
 2003 Microchip Technology Inc. DS40175C-page 3-17

PIC12C67X AND PIC12CE67X
2.2 Program/Verify Mode

The Program/Verify mode is entered by holding pins

GP1 and GP0 low, while raising MCLR pin from VIL to

VIHH (high voltage). VDD is then raised from VIL to VIH.

Once in this mode, the user program memory and the

configuration memory can be accessed and pro-

grammed in serial fashion. The mode of operation is

serial, and the memory that is accessed is the user pro-

gram memory. GP1 is a Schmitt Trigger input in this

mode.

The sequence that enters the device into the Program-

ming/Verify mode places all other logic into the RESET

state (the MCLR pin was initially at VIL). This means

that all I/O are in the RESET state (High impedance

inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The GP1 pin is used as a clock input pin, and the GP0

pin is used for entering command bits and data input/

output during serial operation. To input a command, the

clock pin (GP1) is cycled six times. Each command bit

is latched on the falling edge of the clock with the least

significant bit (LSb) of the command being input first.

The data on pin GP0 is required to have a minimum

setup and hold time (see AC/DC specs), with respect to

the falling edge of the clock. Commands that have data

associated with them (read and load) are specified to

have a minimum delay of 1µs between the command
and the data. After this delay, the clock pin is cycled 16

times with the first cycle being a START bit and the last

cycle being a STOP bit. Data is also input and output

LSb first. Therefore, during a read operation, the LSb

will be transmitted onto pin GP0 on the rising edge of

the second cycle, and during a load operation, the LSb

will be latched on the falling edge of the second cycle.

A minimum 1µs delay is also specified between con-
secutive commands.

All commands are transmitted LSb first. Data words are

also transmitted LSb first. The data is transmitted on

the rising edge and latched on the falling edge of the

clock. To allow for decoding of commands and reversal

of data pin configuration, a time separation of at least

1µs is required between a command and a data word
(or another command).

The commands that are available are listed in Table 2-2.

2.2.1.1 Load Configuration

After receiving this command, the program counter

(PC) will be set to 0x2000. By then applying 16 cycles

to the clock pin, the chip will load 14-bits, a “data word”

as described above, to be programmed into the config-

uration memory. A description of the memory mapping

schemes for normal operation and Configuration mode

operation is shown in Figure 2-1. After the configura-

tion memory is entered, the only way to get back to the

user program memory is to exit the Program/Verify Test

mode by taking MCLR low (VIL).

Note 1: The MCLR pin must be raised from VIL to

VIHH before VDD is applied. This is to

ensure that the device does not have the

PC incremented while in valid operation

range.

2: Do not power GP2, GP4 or GP5 before

VDD is applied.

TABLE 2-2: COMMAND MAPPING

Command Mapping (MSb ... LSb) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0 =====

End Programming 0 0 1 1 1 0 =====
DS40175C-page 3-18  2003 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
FIGURE 2-2: PROGRAM FLOW CHART - PIC12C67X AND PIC12CE67X PROGRAM MEMORY

Start

Set VDD = VDDP*

N = N + 1

Load Data
Command

Increment Address
Command

Report Verify
@ VDDMAX Error

End Programming
Command

Begin Programming
Command

Apply 3N Additional
Program Cycles

Read Data
Command

Program Cycle

Program Cycle N > 25

 Data Correct?

Done

No

Yes

Yes

No

No

Yes

Set VPP = VIHH1

N = 0

 All Locations Done?

Verify all Locations
@ VDDMIN*

VPP = VIHH2

 Data Correct?

Yes

Verify all Locations
@ VDDMAX

VPP = VIHH2

 Data Correct?

Yes

Report Programming
Failure

Wait 100 µs

Report Verify
@ VDDMIN Error

No

No

*VDDP = VDD range for programming (typically 4.75V - 5.25V).

VDDMIN = Minimum VDD for device operation.

VDDMAX = Maximum VDD for device operation.

N = # of Program Cycles
 2003 Microchip Technology Inc. DS40175C-page 3-19

PIC12C67X AND PIC12CE67X
FIGURE 2-3: PROGRAM FLOW CHART - PIC12C67X AND PIC12CE67X CONFIGURATION

WORD & ID LOCATIONS

Vddmin

Vddmax

Start

Load Configuration
Command

Increment Address
Command N = N + 1

N = # of Program

ID/Configuration
Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDMAX

Program Cycle

N = 0

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

 Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDMIN

Read Data Command
Set VPP = VIHH2

Cycles

Set VPP = VIHH1
DS40175C-page 3-20  2003 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
2.2.1.2 Load Data

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied, as

described previously. A timing diagram for the load data

command is shown in Figure 5-1.

2.2.1.3 Read Data

After receiving this command, the chip will transmit

data bits out of the memory currently accessed starting

with the second rising edge of the clock input. The GP0

pin will go into Output mode on the second rising clock

edge, and it will revert back to Input mode (hi-

impedance) after the 16th rising edge. A timing dia-

gram of this command is shown in Figure 5-2.

2.2.1.4 Increment Address

The PC is incremented when this command is

received. A timing diagram of this command is shown

in Figure 5-3.

2.2.1.5 Begin Programming

A load command (load configuration or load data)

must be given before every begin programming

command. Programming of the appropriate memory

(test program memory or user program memory) will

begin after this command is received and decoded.

Programming should be performed with a series of

100µs programming pulses. A programming pulse is
defined as the time between the begin programming

command and the end programming command.

2.2.1.6 End Programming

After receiving this command, the chip stops program-

ming the memory (configuration program memory or

user program memory) that it was programming at the

time.

2.3 Programming Algorithm Requires

Variable VDD

The PIC12C67X and PIC12CE67X uses an intelligent

algorithm. The algorithm calls for program verification

at VDDMIN as well as VDDMAX. Verification at VDDMIN

guarantees good “erase margin”. Verification at

VDDMAX guarantees good “program margin”.

The actual programming must be done with VDD in the

VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDDMIN = minimum operating VDD spec for the part.

VDDMAX = maximum operating VDD spec for the part.

Programmers must verify the PIC12C67X and

PIC12CE67X at its specified VDDmax and VDDmin lev-

els. Since Microchip may introduce future versions of

the PIC12C67X and PIC12CE67X with a broader VDD

range, it is best that these levels are user selectable

(defaults are ok).

Note: Any programmer not meeting these

requirements may only be classified as

“prototype” or “development” programmer,

but not a “production” quality programmer.
 2003 Microchip Technology Inc. DS40175C-page 3-21

PIC12C67X AND PIC12CE67X
3.0 CONFIGURATION WORD

The PIC12C67X and PIC12CE67X family members

have several configuration bits. These bits can be pro-

grammed (reads '0'), or left unprogrammed (reads '1'),

to select various device configurations. Figure 3-1 pro-

vides an overview of configuration bits.

FIGURE 3-1: CONFIGURATION WORD

Bit Number:

11 10 9 8 7 6 5 4 3 2

FOSC2

1

FOSC1

0

FOSC0WDTE

bits13-8, CP1:CP0: Code Protection bits(1)(2)

 6-5 11 = Code protection off

10 = 0400h-07FFh code protected

01 = 0200h-07FFh code protected

00 = 0000h-07FFh code protected

bit 7 MCLRE: GP3/MCLR Pin Function Select

1 = GP3/MCLR pin function is MCLR

0 = GP3/MCLR pin function is digital I/O, MCLR internally tied to VDD

bit 4 PWRTE: Power-up Timer Enable bit(1)

1 = PWRT disabled

0 = PWRT enabled

bit 3 WDTE: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 2-0 FOSC2:FOSC0: Oscillator Selection bits

111 = EXTRC oscillator/CLKOUT function on GP4/OSC2/CLKOUT pin

110 = EXTRC oscillator/GP4 function on GP4/OSC2/CLKOUT pin

101 = INTRC oscillator/CLKOUT function on GP4/OSC2/CLKOUT pin

100 = INTRC oscillator/GP4 function on GP4/OSC2/CLKOUT pin

011 = invalid selection

010 = HS oscillator

001 = XT oscillator

000 = LP oscillator

Note 1: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.

2: 07FFh is always uncode protected on the PIC12C672 and 03FFh is always uncode protected on the PIC12C671.

This location contains the RETLW xx calibration instruction for the INTRC.

13 12

 CP0MCLRE CP1CP0CP1 CP0CP1 CP0CP1 PWRTE
Register: CONFIG

Address 2007h

DS40175C-page 3-22  2003 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
4.0 CODE PROTECTION

The program code written into the EPROM can be pro-

tected by writing to the CP0 and CP1 bits of the config-

uration word.

For PIC12C67X and PIC12CE67X devices, once code

protection is enabled, all protected segments read '0's

(or “garbage values”) and are prevented from further

programming. All unprotected segments, including ID

and configuration word locations, and calibration word

location read normally and can be programmed.

4.1 Embedding Configuration Word and ID Information in the HEX File

TABLE 4-1: CONFIGURATION WORD

PIC12C671, PIC12CE673

To code protect:

√ Protect all memory 00 0000 X00X XXXX
√ Protect 0200h-07FFh 01 0101 X01X XXXX
√ No code protection 11 1111 X11X XXXX

PIC12C672, PIC12CE674

To code protect:

√ Protect all memory 00 0000 X00X XXXX

√ Protect 0200h-07FFh 01 0101 X01X XXXX

√ Protect 0400h-07FFh 10 1010 X10X XXXX

√ No code protection 11 1111 X11X XXXX

To allow portability of code, the programmer is required to read the configuration word and ID locations from the HEX

file when loading the HEX file. If configuration word information was not present in the HEX file then a simple warning

message may be issued. Similarly, while saving a HEX file, configuration word and ID information must be included.

An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Unprotected Memory Segment Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected Memory Segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

INTRC Calibration Word (0X3FF) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Unprotected Memory Segment Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected Memory Segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

INTRC Calibration Word (0X7FF) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
 2003 Microchip Technology Inc. DS40175C-page 3-23

PIC12C67X AND PIC12CE67X
4.2 Checksum

4.2.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the

PIC12C67X and PIC12CE67X memory locations and

adding the opcodes up to the maximum user address-

able location, excluding the oscillator calibration loca-

tion in the last address, e.g., 0x3FE for the PIC12C671/

CE673. Any carry bits exceeding 16-bits are neglected.

Finally, the configuration word (appropriately masked)

is added to the checksum. Checksum computation for

each member of the PIC12C67X and PIC12CE67X

devices is shown in Table 4-2.

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-

sum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

Note that some older devices have an additional value

added in the checksum. This is to maintain compatibil-

ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND

Device
Code

Protect
Checksum*

Blank

Value

Ox25E6 at

0 and max

address

PIC12C671

PIC12CE673

OFF

1/2

ALL

SUM[0x000:0x3FE] + CFGW & 0x3FFF

SUM[0x000:0x1FF] + CFGW & 0x3FFF + SUM_ID

CFGW & 0x3FFF + SUM_ID

FC00

0FBF

FC9F

C7CE

C174

C86D

PIC12C672

PIC12CE674

OFF

1/2

3/4

ALL

SUM[0x000:0x7FE] + CFGW & 0x3FFF

SUM[0x000:0x3FF] + CFGW & 0x3FFF + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3FFF + SUM_ID

CFGW & 0x3FFF + SUM_ID

F800

1EDF

0BBF

F89F

C3CE

D094

BD74

C46D
DS40175C-page 3-24  2003 Microchip Technology Inc.

PIC12C67X and PIC12CE67X
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS

TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (25°C is recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated.

Parameter

No.
Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)

during programming

20 mA

PD3 VDDV Supply voltage during verify VDDMIN VDDMAX V (Note 1)

PD4 VIHH1 Voltage on MCLR/VPP during

programming

12.75 13.25 V (Note 2)

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 13.5

PD6 IPP Programming supply current

(from VPP)

50 mA

PD9 VIH1 (GP0, GP1) input high level 0.8 VDD V Schmitt Trigger input

PD8 VIL1 (GP0, GP1) input low level 0.2 VDD V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VIHH)

for Test mode entry

8.0 µs

P2 Tf MCLR Fall time 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 ns

P4 Thld1 Data in hold time after clock ↓ 100 ns

P5 Tdly1 Data input not driven to next clock

input (delay required between com-

mand/data or command/command)

1.0 µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 µs

P7 Tdly3 Clock ↑ to data out valid
(during read data)

200 ns

P8 Thld0 Hold time after VDD↑ 2 µs

P9 TPPDP Hold time after VPP↑ 5 µs

Note 1: Program must be verified at the minimum and maximum saa limits for the part.

2: sfee must be greater than saa + 4.5V to stay in Programming/Verify mode.
 2003 Microchip Technology Inc. DS40175C-page 3-25

PIC12C67X AND PIC12CE67X
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Mode

0

43

0

100ns

P4

1

100ns
min.

P3

RESET

21

100ns

P8

VIHH

GP1
(Clock)

GP0
(Data)

0

j`ioLVPP

VDD

P9

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Mode

0

43

0

100ns

P4

1

100ns
min.

P3

RESET

21

100ns

P8

VIHH

GP1
(Clock)

GP0
(Data)

0

MCLR/VPP

RB7 = output
RB7
input

P7

}

VDD

P9

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

VIHH

MCLR/VPP

GP1
(CLOCK)

(DATA)

GP0

Reset
Program/Verify Mode

VDD
P9
DS40175C-page 3-26  2003 Microchip Technology Inc.

PIC14000
In-Circuit Serial Programming for PIC14000 OTP MCUs
This document includes the programming

specifications for the following devices:

1.0 PROGRAMMING THE PIC14000

The PIC14000 can be programmed using a serial

method. In serial mode the PIC14000 can be pro-

grammed while in the users system. This allows for

increased design flexibility. This programming specifi-

cation applies to PIC14000 devices in all packages.

1.1 Hardware Requirements

The PIC14000 requires two programmable power sup-

plies, one for VDD (2.0V to 6.5V recommended) and

one for VPP (12V to 14V).

1.2 Programming Mode

The programming mode for the PIC14000 allows pro-

gramming of user program memory, configuration

word, and calibration memory.

PIN DIAGRAM

• PIC14000 PDIP, SOIC, SSOP, Windowed CERDIP

28

27

26

25

24

23

22

21

20

19

18

17

16

15

RA2/AN2

RA3/AN3

RD4/AN4

RD5/AN5

RD6/AN6

RD7/AN7

CDAC

SUM

VSS

RC0/REFA

RC1/CMPA

RC2

RC3/T0CKI

RC4

P
IC

1
4
0
0
0

• 1

2

3

4

5

6

7

8

9

10

11

12

13

14

RA1/AN1

RA0/AN0

RD3/REFB

RD2/CMPB

RD1/SDAB

RD0/SCLB

OSC2/CLKOUT

OSC1/PBTN

VDD

VREG

RC7/SDAA

RC6/SCLA

RC5

MCLR/VPP
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMRRR_Jé~ÖÉ=PJOT

PIC14000
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The program and calibration memory space extends

from 0x000 to 0xFFF (4096 words). Table 2-1 shows

actual implementation of program memory in the

PIC14000.

TABLE 2-1: IMPLEMENTATION OF

PROGRAM AND

CALIBRATION MEMORY IN

THE PIC14000P

When the PC reaches address 0xFFF, it will wrap

around and address a location within the physically

implemented memory (see Figure 2-1).

In programming mode the program memory space

extends from 0x0000 to 0x3FFF, with the first half

(0x0000-0x1FFF) being user program memory and the

second half (0x2000-0x3FFF) being configuration

memory. The PC will increment from 0x0000 to 0x1FFF

and wrap to 0x0000, or 0x2000 to 0x3FFF and wrap

around to 0x2000 (not to 0x0000). Once in configura-

tion memory, the highest bit of the PC stays a '1', thus

always pointing to the configuration memory. The only

way to point to user program memory is to reset the

part and reenter program/verify mode, as described in

Section 2.2.

In the configuration memory space, 0x2000-0x20FF

are utilized. When in configuration memory, as in the

user memory, the 0x2000-0x2XFF segment is repeat-

edly accessed as PC exceeds 0x2XFF (Figure 2-1).

A user may store identification information (ID) in four

ID locations. The ID locations are mapped in [0x2000:

0x2003]. All other locations are reserved and should

not be programmed.

The ID locations read out normally, even after code pro-

tection. To understand how the devices behave, refer to

Table 4-1.

To understand the scrambling mechanism after code

protection, refer to Section 4.1.

Area Memory Space
Access to

Memory

Program 0x000-0xFBF PC<12:0>

Calibration 0xFC0 -0xFFF PC<12:0>
apPMRRR_Jé~ÖÉ=PJOU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC14000
FIGURE 2-1: PROGRAM MEMORY MAPPING

0

0FC0

0FFF

1FFF

20FF

3FFF

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

0FBF

2000

Program

Reserved

Calibration

Test

Reserved
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMRRR_Jé~ÖÉ=PJOV

PIC14000
2.2 Program/Verify Mode

The program/verify mode is entered by holding pins

RC6 and RC7 low while raising MCLR pin from VIL to

VIHH (high voltage). Once in this mode the user pro-

gram memory and the configuration memory can be

accessed and programmed in serial fashion. The mode

of operation is serial, and the memory that is accessed

is the user program memory. RC6 and RC7 are both

Schmitt Trigger inputs in this mode.

The sequence that enters the device into the program-

ming/verify mode places all other logic into the reset

state (the MCLR pin was initially at VIL). This means

that all I/O are in the reset state (High impedance

inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7

pin is used for entering command bits and data input/

output during serial operation. To input a command, the

clock pin (RC6) is cycled six times. Each command bit

is latched on the falling edge of the clock with the least

significant bit (LSB) of the command being input first.

The data on pin RC7 is required to have a minimum

setup and hold time (see AC/DC specs) with respect to

the falling edge of the clock. Commands that have data

associated with them (read and load) are specified to

have a minimum delay of 1µs between the command
and the data. After this delay the clock pin is cycled 16

times with the first cycle being a start bit and the last

cycle being a stop bit. Data is also input and output LSB

first. Therefore, during a read operation the LSB will be

transmitted onto pin RC7 on the rising edge of the sec-

ond cycle, and during a load operation the LSB will be

latched on the falling edge of the second cycle. A min-

imum 1µs delay is also specified between consecutive
commands.

All commands are transmitted LSB first. Data words

are also transmitted LSB first. The data is transmitted

on the rising edge and latched on the falling edge of the

clock. To allow for decoding of commands and reversal

of data pin configuration, a time separation of at least

1µs is required between a command and a data word
(or another command).

The commands that are available are listed in Table .

2.2.1.1 LOAD CONFIGURATION

After receiving this command, the program counter

(PC) will be set to 0x2000. By then applying 16 cycles

to the clock pin, the chip will load 14-bits a “data word”

as described above, to be programmed into the config-

uration memory. A description of the memory mapping

schemes for normal operation and configuration mode

operation is shown in Figure 2-1. After the configura-

tion memory is entered, the only way to get back to the

user program memory is to exit the program/verify test

mode by taking MCLR low (VIL).

Note: The MCLR pin should be raised as quickly

as possible from VIL to VIHH. This is to

ensure that the device does not have the

PC incremented while in valid operation

range.

TABLE 2-1: COMMAND MAPPING

Command Mapping (MSB ... LSB) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The CPU clock must be disabled during in-circuit programming (to avoid incrementing the PC).
apPMRRR_Jé~ÖÉ=PJPM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC14000
FIGURE 2-2: PROGRAM FLOW CHART - PIC14000 PROGRAM MEMORY AND CALIBRATION

* VDDP = VDD range for programming (typically 4.75V - 5.25V).
VDDmin = Minimum VDD for device operation.
VDDmax = Maximum VDD for device operation.

6WDUW

1R

<HV

<HV

<HV

'RQH

1R

1R

1R

'DWD�&RUUHFW"

3URJUDP�&\FOH

5HDG�'DWD�
&RPPDQG 1� �1���������1� ���

RI�3URJUDP�&\FOHV

1�!��� 5HSRUW�3URJUDPPLQ
)DLOXUH

,QFUHPHQW�$GGUHVV�
&RPPDQG

$SSO\��1�$GGLWLRQDO
3URJUDP�&\FOHV

$OO�/RFDWLRQV�'RQH"

'DWD�&RUUHFW" 5HSRUW�9HULI\
#�9''�PLQ��(UURU

3URJUDP�&\FOH

/RDG�'DWD�
&RPPDQG

%HJLQ�3URJUDPPLQJ
&RPPDQG

:DLW�����µV

(QG�3URJUDPPLQJ�
&RPPDQG

1R

<HV

'DWD�&RUUHFW" 5HSRUW�9HULI\
#�9''�PD[��(UURU

1� ��

<HV

6HW�9''� �9''3�

9HULI\�DOO�/RFDWLRQV
#�9''�PLQ��
933� �9,++�

9HULI\�DOO�/RFDWLRQV
#�9''�PD[�
933� �9,++�
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMRRR_Jé~ÖÉ=PJPN

PIC14000
FIGURE 2-3: PROGRAM FLOW CHART - PIC14000 CONFIGURATION WORD & ID LOCATIONS

Vaamin

Vaamax

Start

Load Configuration
Command

Increment Address
Command N = N + 1 N = #

of Program Cycles

Report ID
Configuration Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDmax

Program Cycle

N = 0

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDmin

Read Data Command
Set VPP = VIHH2
apPMRRR_Jé~ÖÉ=PJPO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC14000
2.2.1.2 LOAD DATA

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied, as

described previously. A timing diagram for the load data

command is shown in Figure 5-1.

2.2.1.3 READ DATA

After receiving this command, the chip will transmit

data bits out of the memory currently accessed starting

with the second rising edge of the clock input. The RC7

pin will go into output mode on the second rising clock

edge, and it will revert back to input mode (hi-imped-

ance) after the 16th rising edge. A timing diagram of

this command is shown in Figure 5-2.

2.2.1.4 INCREMENT ADDRESS

The PC is incremented when this command is

received. A timing diagram of this command is shown

in Figure 5-3.

2.2.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)

must be given before every begin programming

command. Programming of the appropriate memory

(test program memory or user program memory) will

begin after this command is received and decoded.

Programming should be performed with a series of

100µs programming pulses. A programming pulse is
defined as the time between the begin programming

command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-

ming the memory (configuration program memory or

user program memory) that it was programming at the

time.

2.3 Programming Algorithm Requires

Variable VDD

The PIC14000 uses an intelligent algorithm. The algo-

rithm calls for program verification at VDDmin as well as

VDDmax. Verification at VDDmin guarantees good

“erase margin”. Verification at VDDmax guarantees

good “program margin”.

The actual programming must be done with VDD in the

VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDDmin = minimum operating VDD spec for the part.

VDDmax = maximum operating VDD spec for the part.

Programmers must verify the PIC14000 at its specified

VDDmax and VDDmin levels. Since Microchip may

introduce future versions of the PIC14000 with a

broader VDD range, it is best that these levels are user

selectable (defaults are ok).

Note: Any programmer not meeting these

requirements may only be classified as

“prototype” or “development” programmer

but not a “production” quality programmer.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMRRR_Jé~ÖÉ=PJPP

PIC14000
3.0 CONFIGURATION WORD

The PIC14000 has several configuration bits. These

bits can be programmed (reads '0') or left unpro-

grammed (reads '1') to select various device configura-

tions. Figure 3-1 provides an overview of configuration

bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIC14000 CPC CPP1 CPP0 CPP0 CPP1 CPC CPC F CPP1 CPP0 PWRTE WDTE F FOSC

CPP<1:0>

11: All Unprotected

10: N/A

01: N/A

00: All Protected

bit 1,6: F Internal trim, factory programmed. DO NOT CHANGE! Program as ‘1’. Note 1.

bit 3: PWRTE, Power Up Timer Enable Bit

0 = Power up timer enabled

1 = Power up timer disabled (unprogrammed)

bit 2: WDTE, WDT Enable Bit

0 = WDT disabled

1 = WDT enabled (unprogrammed)

bit 0: FOSC<1:0>, Oscillator Selection Bit

0: HS oscillator (crystal/resonator)

1: Internal RC oscillator (unprogrammed)

Note 1: See Section 4.1.2 for cautions.
apPMRRR_Jé~ÖÉ=PJPQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC14000
4.0 CODE PROTECTION

The memory space in the PIC14000 is divided into two

areas: program space (0-0xFBF) and calibration space

(0xFC0-0xFFF).

For program space or user space, once code protec-

tion is enabled, all protected segments read ‘0’s (or

“garbage values”) and are prevented from further pro-

gramming. All unprotected segments, including ID

locations and configuration word, read normally. These

locations can be programmed.

4.1 Calibration Space

The calibration space can contain factory-generated

and programmed values. For non-JW devices, the

CPC bits in the configuration word are set to ‘0’ at the

factory, and the calibration data values are write-pro-

tected; they may still be read out, but not programmed.

JW devices contain the factory values, but DO NOT

have the CPC bits set.

Microchip does not recommend setting code protect

bits in windowed devices to ‘0’. Once code-protected,

the device cannot be reprogrammed.

4.1.1 CALIBRATION SPACE CHECKSUM

The data in the calibration space has its own check-

sum. When properly programmed, the calibration

memory will always checksum to 0x0000. When this

checksum is 0x0000, and the checksum of memory

[0x0000:0xFBF] is 0x2FBF, the part is effectively blank,

and the programmer should indicate such.

If the CPC bits are set to ‘1’, but the checksum of the

calibration memory is 0x0000, the programmer should

NOT program locations in the calibration memory

space, even if requested to do so by the operator. This

would be the case for a new JW device.

If the CPC bits are set to ‘1’, and the checksum of the

calibration memory is NOT 0x0000, the programmer is

allowed to program the calibration space as directed by

the operator.

The calibration space contains specially coded data

values used for device parameter calibration. The pro-

grammer may wish to read these values and display

them for the operator’s convenience. For further infor-

mation on these values and their coding, refer to

AN621 (DS00621B).

4.1.2 REPROGRAMMING CALIBRATION SPACE

The operator should be allowed to read and store the

data in the calibration space, for future reprogramming

of the device. This procedure is necessary for repro-

gramming a windowed device, since the calibration

data will be erased along with the rest of the memory.

When saving this data, Configuration Word <1,6> must

also be saved, and restored when the calibration data

is reloaded.

4.2 Embedding Configuration Word and ID Information in the Hex File

TABLE 4-1: CODE PROTECT OPTIONS

• Protect calibration memory

0XXXX00XXXXXXX

• Protect program memory

X0000XXX00XXXX

• No code protection

1111111X11XXXX

Legend: X = Don’t care

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex

file when loading the hex file. If configuration word information was not present in the hex file then a simple warning

message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.

An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Unprotected memory segment Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

Protected calibration memory Read Unscrambled, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMRRR_Jé~ÖÉ=PJPR

PIC14000
4.3 Checksum

4.3.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the

PIC14000 memory locations and adding up the

opcodes up to the maximum user addressable location,

0xFBF. Any carry bits exceeding 16-bits are neglected.

Finally, the configuration word (appropriately masked)

is added to the checksum. Checksum computation for

the PIC14000 device is shown in Table 4-2:

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-

sum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

Note that some older devices have an additional value

added in the checksum. This is to maintain compatibil-

ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Code

Protect
Checksum*

Blank

Value

0x25E6 at

0 and max

address

OFF

OFF OTP

ON

SUM[0000:0FBF] + CFGW & 0x3FBD

SUM[0000:0FBF] + CFGW & 0x3FBD

CFGW & 0x3FBD + SUM(IDs)

0x2FFD

0x0E7D

0x300A

0xFBCB

0xDA4B

0xFBD8

Legend: CFGW = Configuration Word

SUM[A:B] = [Sum of locations a through b inclusive]

SUM(ID) = ID locations masked by 0x7F then made into a 28-bit value with ID0 as the most significant byte

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND
apPMRRR_Jé~ÖÉ=PJPS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC14000
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS

AC/DC TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

Standard Operating Conditions

Operating Temperature: +10×C £ TA £ +40×C, unless otherwise stated, (25×C recommended)

Operating Voltage: 4.5V £ VDD £ 5.5V, unless otherwise stated.

Parameter

No.
Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)

during programming

– – 20 mA

PD3 VDDV Supply voltage during verify VDDmin VDDmax V Note 1

PD4 VIHH1 Voltage on MCLR/VPP during

programming

12.75 – 13.25 V Note 2

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 13.5

PD6 IPP Programming supply current (from

VPP)

– – 50 mA

PD9 VIH1 (RC6, RC7) input high level 0.8 VDD – – V Schmitt Trigger input

PD8 VIL1 (RC6, RC7) input low level 0.2 VDD – – V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH)

for test mode entry

– – 8.0 ms

P2 Tf MCLR Fall time – – 8.0 ms

P3 Tset1 Data in setup time before clock Ø 100 – – ns

P4 Thld1 Data in hold time after clock Ø 100 – – ns

P5 Tdly1 Data input not driven to next clock

input (delay required between com-

mand/data or command/command)

1.0 – – ms

P6 Tdly2 Delay between clock Ø to clock ¦ of

next command or data

1.0 – – ms

P7 Tdly3 Clock ¦ to date out valid

(during read data)

200 – – ns

P8 Thld0 Hold time after MCLR ¦ 2 – – ms

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.

Note 2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMRRR_Jé~ÖÉ=PJPT

PIC14000
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RC6
(CLOCK)

RC7
(DATA)

0

j`ioLVPP

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns

P8

VIHH

RC6
(CLOCK)

RC7
(DATA)

0

j`io/VPP

RC7 = output
RC7
input

P7

}

õ õ

MMM M M MN N

N O P Q R S N O

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

sfee

j`ioLsmm

o`S
E`il`hF

Ea q̂̂ F

o`T

Reset
Program/Verify Test Mode
apPMRRR_Jé~ÖÉ=PJPU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC16C55X
In-Circuit Serial Programming for PIC16C55X OTP MCUs
This document includes the programming

specifications for the following devices:

1.0 PROGRAMMING THE
PIC16C55X

The PIC16C55X can be programmed using a serial

method. In serial mode the PIC16C55X can be pro-

grammed while in the users system. This allows for

increased design flexibility.

1.1 Hardware Requirements

The PIC16C55X requires two programmable power

supplies, one for VDD (2.0V to 6.5V recommended) and

one for VPP (12V to 14V). Both supplies should have a

minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16C55X allows pro-

gramming of user program memory, special locations

used for ID, and the configuration word for the

PIC16C55X.

PIN Diagrams

• PIC16C554

• PIC16C556

• PIC16C558
RA1
RA0

OSC2/CLKOUT
VDD

RB7
RB6
RB5
RB4

OSC1/CLKIN

RA2
RA3

MCLR
VSS

RB0/INT
RB1
RB2
RB3

RA4/T0CKI

P
IC

1
6
C
5
5
X

RA1
RA0

OSC2/CLKOUT
VDD

RB7
RB6
RB5
RB4

OSC1/CLKIN

RA2
RA3

MCLR
VSS

VSS

RB0/INT
RB1
RB2

RA4/T0CKI

P
IC

1
6
C
5
5
X

RB3RB3

VDD

PDIP, SOIC, Windowed CERDIP

SSOP

 2
 3
 4
 5
 6
 7
 8
 9
10

•1

 2
 3
 4
 5
 6
 7
 8
 9

•1

19
18

16
15
14
13
12
11

17

18
17

15
14
13
12
11
10

16

20
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOSN`Jé~ÖÉ=PJPV

PIC16C55X
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to

0x1FFF (8K). Table 2-1 shows actual implementation

of program memory in the PIC16C55X family.

TABLE 2-1: IMPLEMENTATION OF

PROGRAM MEMORY IN THE

PIC16C55X

When the PC reaches the last location of the imple-

mented program memory, it will wrap around and

address a location within the physically implemented

memory (see Figure 2-1).

In programming mode the program memory space

extends from 0x0000 to 0x3FFF, with the first half

(0x0000-0x1FFF) being user program memory and the

second half (0x2000-0x3FFF) being configuration

memory. The PC will increment from 0x0000 to 0x1FFF

and wrap to 0x000 or 0x2000 to 0x3FFF and wrap

around to 0x2000 (not to 0x0000). Once in configura-

tion memory, the highest bit of the PC stays a '1', thus

always pointing to the configuration memory. The only

way to point to user program memory is to reset the

part and reenter program/verify mode, as described in

Section 2.2.

In the configuration memory space, 0x2000-0x20FF

are utilized. When in a configuration memory, as in the

user memory, the 0x2000-0x2XFF segment is repeat-

edly accessed as the PC exceeds 0x2XFF (see

Figure 2-1).

A user may store identification information (ID) in four

ID locations. The ID locations are mapped in [0x2000:

0x2003]. It is recommended that the user use only the

four least significant bits of each ID location. In some

devices, the ID locations read-out in a scrambled fash-

ion after code protection is enabled. For these devices,

it is recommended that ID location is written as “11 1111

1000 bbbb” where 'bbbb' is ID information.

Note: All other locations are reserved and should

not be programmed.

In other devices, the ID locations read out normally,

even after code protection. To understand how the

devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code

protection, refer to Section 4.1.

Device Program Memory Size

Access to

Program

Memory

PIC16C554 0x000 - 0x1FF (0.5K) PC<8:0>

PIC16C556 0x000 - 0x3FF (1K) PC<9:0>

PIC16C558 0x000 - 0x7FF (2K) PC<10:0>
apPMOSN`Jé~ÖÉ=PJQM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC16C55X
FIGURE 2-1: PROGRAM MEMORY MAPPING

0.5KW 1KW 2KW

Implemented Implemented

Implemented

Reserved

Reserved Reserved Reserved

Reserved Reserved Reserved

0

3FF
400

7FF
800

BFF
C00

FFF
1000

1FFF

2000

2008

2100

3FFF

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

1FF

 Reserved

 Reserved

Implemented

Reserved Reserved
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOSN`Jé~ÖÉ=PJQN

PIC16C55X
2.2 Program/Verify Mode

The program/verify mode is entered by holding pins

RB6 and RB7 low while raising MCLR pin from VIL to

VIHH (high voltage). Once in this mode the user pro-

gram memory and the configuration memory can be

accessed and programmed in serial fashion. The mode

of operation is serial, and the memory that is accessed

is the user program and configuration memory. RB6 is

a Schmitt Trigger input in this mode.

The sequence that enters the device into the program-

ming/verify mode places all other logic into the reset

state (the MCLR pin was initially at VIL). This means

that all I/O are in the reset state (High impedance

inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7

pin is used for entering command bits and data input/

output during serial operation. To input a command, the

clock pin (RB6) is cycled six times. Each command bit

is latched on the falling edge of the clock with the least

significant bit (LSB) of the command being input first.

The data on pin RB7 is required to have a minimum

setup and hold time (see AC/DC specs) with respect to

the falling edge of the clock. Commands that have data

associated with them (read and load) are specified to

have a minimum delay of 1ms between the command

and the data. After this delay the clock pin is cycled 16

times with the first cycle being a start bit and the last

cycle being a stop bit. Data is also input and output LSB

first. Therefore, during a read operation the LSB will be

transmitted onto pin RB7 on the rising edge of the sec-

ond cycle, and during a load operation the LSB will be

latched on the falling edge of the second cycle. A min-

imum 1ms delay is also specified between consecutive

commands.

The commands that are available are listed

in Table 2-1.

2.2.1.1 LOAD CONFIGURATION

After receiving this command, the program counter

(PC) will be set to 0x2000. By then applying 16 cycles

to the clock pin, the chip will load 14-bits a “data word”

as described above, to be programmed into the config-

uration memory. A description of the memory mapping

schemes for normal operation and configuration mode

operation is shown in Figure 2-1. After the configura-

tion memory is entered, the only way to get back to the

user program memory is to exit the program/verify test

mode by taking MCLR low (VIL).

Note: The MCLR pin should be raised as quickly

as possible from VIL to VIHH. this is to

ensure that the device does not have the

PC incremented while in valid operation

range.

TABLE 2-1: COMMAND MAPPING

Command Mapping (MSB ... LSB) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The CPU clock must be disabled during in-circuit programming.
apPMOSN`Jé~ÖÉ=PJQO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC16C55X
FIGURE 2-2: PROGRAM FLOW CHART - PIC16C55X PROGRAM MEMORY

* VDDP = VDD range for programming (typically 4.75V - 5.25V).
VDDmin = Minimum VDD for device operation.
VDDmax = Maximum VDD for device operation.

6WDUW

1R

<HV

<HV

<HV

'RQH

1R

1R

1R

'DWD�&RUUHFW"

3URJUDP�&\FOH

5HDG�'DWD�
&RPPDQG 1� �1���������1� ���

RI�3URJUDP�&\FOHV

1�!��� 5HSRUW�3URJUDPPLQ
)DLOXUH

,QFUHPHQW�$GGUHVV�
&RPPDQG

$SSO\��1�$GGLWLRQDO
3URJUDP�&\FOHV

$OO�/RFDWLRQV�'RQH"

'DWD�&RUUHFW" 5HSRUW�9HULI\
#�9''�PLQ��(UURU

3URJUDP�&\FOH

/RDG�'DWD�
&RPPDQG

%HJLQ�3URJUDPPLQJ
&RPPDQG

:DLW�����µV

(QG�3URJUDPPLQJ�
&RPPDQG

1R

<HV

'DWD�&RUUHFW" 5HSRUW�9HULI\
#�9''�PD[��(UURU

1� ��

<HV

6HW�9''� �9''3�

9HULI\�DOO�/RFDWLRQV
#�9''�PLQ��
933� �9,++�

9HULI\�DOO�/RFDWLRQV
#�9''�PD[�
933� �9,++�
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOSN`Jé~ÖÉ=PJQP

PIC16C55X
FIGURE 2-3: PROGRAM FLOW CHART - PIC16C55X CONFIGURATION WORD & ID LOCATIONS

Vaamin

Vaamax

Start

Load Configuration
Command

Increment Address
Command N = N + 1 N = #

of Program Cycles

ID/Configuration
Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDmax

Program Cycle

N = 0

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

 Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDmin

Read Data Command
Set VPP = VIHH2
apPMOSN`Jé~ÖÉ=PJQQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC16C55X
2.2.1.2 LOAD DATA

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied, as

described previously. A timing diagram for the load data

command is shown in Figure 5-1.

2.2.1.3 READ DATA

After receiving this command, the chip will transmit

data bits out of the memory currently accessed starting

with the second rising edge of the clock input. The RB7

pin will go into output mode on the second rising clock

edge, and it will revert back to input mode (hi-imped-

ance) after the 16th rising edge. A timing diagram of

this command is shown in Figure 5-2.

2.2.1.4 INCREMENT ADDRESS

The PC is incremented when this command is

received. A timing diagram of this command is shown

in Figure 5-3.

2.2.1.5 BEGIN PROGRAMMING

A load command (load configuration or load data)

must be given before every begin programming

command. Programming of the appropriate memory

(test program memory or user program memory) will

begin after this command is received and decoded.

Programming should be performed with a series of

100ms programming pulses. A programming pulse is

defined as the time between the begin programming

command and the end programming command.

2.2.1.6 END PROGRAMMING

After receiving this command, the chip stops program-

ming the memory (configuration program memory or

user program memory) that it was programming at the

time.

2.3 Programming Algorithm Requires

Variable VDD

The PIC16C55X uses an intelligent algorithm. The

algorithm calls for program verification at VDDmin as

well as VDDmax. Verification at VDDmin guarantees

good “erase margin”. Verification at VDDmax guaran-

tees good “program margin”.

The actual programming must be done with VDD in the

VDDP range (4.75 - 5.25V).

VDDP = VCC range required during programming.

VDD min. = minimum operating VDD spec for the part.

VDD max.= maximum operating VDD spec for the part.

Programmers must verify the PIC16C55X at its speci-

fied VDDmax and VDDmin levels. Since Microchip may

introduce future versions of the PIC16C55X with a

broader VDD range, it is best that these levels are user

selectable (defaults are ok).

Note: Any programmer not meeting these

requirements may only be classified as

“prototype” or “development” programmer

but not a “production” quality programmer.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOSN`Jé~ÖÉ=PJQR

PIC16C55X
3.0 CONFIGURATION WORD

The PIC16C55X family members have several config-

uration bits. These bits can be programmed (reads '0')

or left unprogrammed (reads '1') to select various

device configurations. Figure 3-1 provides an overview

of configuration bits.

FIGURE 3-1: CONFIGURATION WORD BIT MAP

Bit
Number:

13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIC16C554/556/558 CP1 CP0 CP1 CP0 CP1 CP0 — 0 CP1 CP0 PWRTE WDTE FOSC1 FOSC0

bit 7: Reserved for future use

bit 6: Set to 0

bit 5-4: CP1:CP0, Code Protect

bit 8-13

bit 3: PWRTE, Power Up Timer Enable Bit

PIC16C554/556/558:

 0 = Power up timer enabled

 1 = Power up timer disabled

bit 2: WDTE, WDT Enable Bit

1 = WDT enabled

0 = WDT disabled

bit 1-0:FOSC<1:0>, Oscillator Selection Bit

11: RC oscillator

10: HS oscillator

01: XT oscillator

00: LP oscillator

Device CP1 CP0 Code Protection

PIC16C554 All memory protected

Do not use

Do not use

Code protection off

0 0

0 1

1 0

1 1

PIC16C556 All memory protected

Upper 1/2 memory protected

Do not use

Code protection off

0 0

0 1

1 0

1 1

PIC16C558 All memory protected

Upper 3/4 memory protected

Upper 1/2 memory protected

Code protection off

0 0

0 1

1 0

1 1
apPMOSN`Jé~ÖÉ=PJQS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC16C55X
4.0 CODE PROTECTION

The program code written into the EPROM can be pro-

tected by writing to the CP0 & CP1 bits of the configu-

ration word.

4.1 Programming Locations 0x0000 to

0x03F after Code Protection

For PIC16C55X devices, once code protection is

enabled, all protected segments read '0's (or “garbage

values”) and are prevented from further programming.

All unprotected segments, including ID locations and

configuration word, read normally. These locations can

be programmed.

4.2 Embedding Configuration Word and ID Information in the Hex File

TABLE 4-1: CONFIGURATION WORD

PIC16C554

To code protect:

• Protect all memory 0000001000XXXX

• No code protection 1111111011XXXX

PIC16C556

To code protect:

• Protect all memory 0000001000XXXX

• Protect upper 1/2 memory 0101011001XXXX

• No code protection 1111111011XXXX

PIC16C558

To code protect:

• Protect all memory 0000001000XXXX

• Protect upper 3/4 memory 0101011001XXXX

• Protect upper 1/2 memory 1010101010XXXX

• No code protection 1111111011XXXX

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex

file when loading the hex file. If configuration word information was not present in the hex file then a simple warning

message may be issued. Similarly, while saving a hex file, configuration word and ID information must be included.

An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (0x2007) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Protected memory segment Read All 0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations (0x2000 : 0x2003) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOSN`Jé~ÖÉ=PJQT

PIC16C55X
4.3 Checksum

4.3.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the

PIC16C55X memory locations and adding up the

opcodes up to the maximum user addressable location,

e.g., 0x1FF for the PIC16C74. Any carry bits exceeding

16-bits are neglected. Finally, the configuration word

(appropriately masked) is added to the checksum.

Checksum computation for each member of the

PIC16C55X devices is shown in Table .

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-

sum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

Note that some older devices have an additional value

added in the checksum. This is to maintain compatibil-

ity with older device programmer checksums.

TABLE 4-2: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank

Value

0x25E6 at

0 and max

address

PIC16C554 OFF

ALL

SUM[0x000:0x1FF] + CFGW & 0x3F3F

SUM_ID + CFGW & 0x3F3F

3D3F

3D4E

090D

091C

PIC16C556 OFF

1/2

ALL

SUM[0x000:0x3FF] + CFGW & 0x3F3F

SUM[0x000:0x1FF] + CFGW & 0x3F3F + SUM_ID

CFGW & 0x3F3F + SUM_ID

3B3F

4E5E

3B4E

070D

0013

071C

PIC16C558 OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F3F

SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F3F + SUM_ID

CFGW & 0x3F3F + SUM_ID

373F

5D6E

4A5E

374E

030D

0F23

FC13

031C

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND
apPMOSN`Jé~ÖÉ=PJQU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC16C55X
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 5-1: AC/DC CHARACTERISTICS

TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10×C £ TA £ +40×C, unless otherwise stated, (25×C is recommended)

Operating Voltage: 4.5V £ VDD £ 5.5V, unless otherwise stated.

Parameter

No.
Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)

during programming

- - 20 mA

PD3 VDDV Supply voltage during verify VDDmin - VDDmax V Note 1

PD4 VIHH1 Voltage on MCLR/VPP during

programming

12.75 - 13.25 V Note 2

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.0 - 13.5 -

PD6 IPP Programming supply current (from

VPP)

- - 50 mA

PD9 VIH1 (RB6, RB7) input high level 0.8 VDD - - V Schmitt Trigger input

PD8 VIL1 (RB6, RB7) input low level 0.2 VDD - - V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH)

for test mode entry

- - 8.0 ms

P2 Tf MCLR Fall time - - 8.0 ms

P3 Tset1 Data in setup time before clock Ø 100 - - ns

P4 Thld1 Data in hold time after clock Ø 100 - - ns

P5 Tdly1 Data input not driven to next clock

input (delay required between com-

mand/data or command/command)

1.0 - - ms

P6 Tdly2 Delay between clock Ø to clock ¦ of

next command or data

1.0 - - ms

P7 Tdly3 Clock ¦ to date out valid

(during read data)

200 - - ns

P8 Thld0 Hold time after MCLR ¦ 2 - - ms

- Tpw Programming Pulse Width 10 100 1000 ms

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.

2: VIHH must be greater than VDD + 4.5V to stay in programming/verify mode.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOSN`Jé~ÖÉ=PJQV

PIC16C55X
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100ns
min.

P4
P3

000

1µs min.

P5

1µs min.

P6

0

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns
P8

VIHH

RB6
(CLOCK)

RB7
(DATA)

0

j`ioLVPP

}

00

1µs min.

P5

1µs min.

P6

155432165

Program/Verify Test Mode

0

43

0

100ns

P4

1

100ns
min.

P3

Reset

21

100ns

P8

VIHH

RB6
(CLOCK)

RB7
(DATA)

0

j`io/VPP

RB7 = output
RB7
input

P7

}

õ õ

MMM M M MN N

N O P Q R S N O

100ns
min

P3 P4

P6

1µs min.
Next Command

P5

1µs min.

sfee

j`ioLsmm

o_S
E`il`hF

Ea q̂̂ F

o_T

oÉëÉí
Program/Verify Test Mode
apPMOSN`Jé~ÖÉ=PJRM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC16C6XX/7XX/9XX
Programming Specifications for PIC16C6XX/7XX/9XX OTP MCUs
This document includes the

programming specifications for the

following devices:

1.0 PROGRAMMING THE
PIC16C6XX/7XX/9XX

The PIC16C6XX/7XX/9XX family can be programmed

using a serial method. In Serial mode, the

PIC16C6XX/7XX/9XX can be programmed while in the

users system. This allows for increased design flexibil-

ity. This programming specification applies to

PIC16C6XX/7XX/9XX devices in all packages.

1.1 Hardware Requirements

The PIC16C6XX/7XX/9XX requires two programmable

power supplies, one for VDD (2.0V to 6.5V recom-

mended) and one for VPP (12V to 14V). Both supplies

should have a minimum resolution of 0.25V.

1.2 Programming Mode

The Programming mode for the PIC16C6XX/7XX/9XX

allows programming of user program memory, special

locations used for ID, and the configuration word for the

PIC16C6XX/7XX/9XX.

Pin Diagrams

• PIC16C61 • PIC16C72A • PIC16CE623

• PIC16C62 • PIC16C73 • PIC16CE624

• PIC16C62A • PIC16C73A • PIC16CE625

• PIC16C62B • PIC16C73B • PIC16C710

• PIC16C63 • PIC16C74 • PIC16C711

• PIC16C63A • PIC16C74A • PIC16C712

• PIC16C64 • PIC16C74B • PIC16C716

• PIC16C64A • PIC16C76 • PIC16C745

• PIC16C65 • PIC16C77 • PIC16C765

• PIC16C65A • PIC16C620 • PIC16C773

• PIC16C65B • PIC16C620A • PIC16C774

• PIC16C66 • PIC16C621 • PIC16C923

• PIC16C67 • PIC16C621A • PIC16C924

• PIC16C71 • PIC16C622 • PIC16C925

• PIC16C72 • PIC16C622A • PIC16C926

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0/INT

VDD

VSS

RD7

RD6

RD5

RD4

RC7

RC6

RC5

RC4

RD3

RD2

MCLR/VPP

RA0

RA1

RA2

RA3

RA4/T0CKI

RA5

RE0

RE1

RE2

VDD

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0

RC1

RC2

RC3

RD0

RD1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

PDIP, Windowed CERDIP

P
IC

1
6
C
6
4
/6
4
A
/6
5
/6
5
A
/6
7

P
IC

1
6
C
7
4
/7
4
A
/7
4
B
/7
7
/7
6
5

PDIP, SOIC, Windowed CERDIP (300 mil)

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0/INT

VDD

VSS

RC7

RC6

RC5

RC4

MCLR/VPP

RA0

RA1

RA2

RA3

RA4/T0CKI

RA5

Vss

OSC1/CLKIN

OSC2/CLKOUT

RC0

RC1

RC2

RC3

• 1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

P
IC

1
6
C
6
2
/6
2
A
/6
3
/6
6
/7
2
/7
2
A

P
IC

1
6
C
7
3
/7
3
A
/7
3
B
/7
6
/7
4
5

 2003 Microchip Technology Inc. DS30228K-page 3-51

PIC16C6XX/7XX/9XX
Pin Diagrams (Con’t)

18

17

16

15

14

13

12

11

10

• 1

2

3

4

5

6

7

8

9

RA1

RA0

OSC1/CLKIN

OSC2/CLKOUT

VDD

RB7

RB6

RB5

RB4

P
IC

1
6
C
6
1
/7
1

P
IC

1
6
C
6
2
X

P
IC

1
6
C
7
1
0
/7
1
1

MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2/VREF-/VRL

RA3/AN3/VREF+/VRH

RA4/T0CKI

AVDD

AVSS

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RB7

RB6

RB5

RB4

RB3/AN9/LVDIN

RB2/AN8

RB1/SS

RB0/INT

VDD

VSS

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

• 1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

300 mil. SDIP, SOIC, Windowed CERDIP, SSOP

P
IC

1
6
C
7
7
3

P
IC

1
6
C
7
1
2

RA2/AN2

RA4/T0CKI

RB0/INT

RB1/T1OSO/T1CKI

RA0/AN0

OSC1/CLKIN

RB7

RB6

• 1

2

3

4

5

6

7

18

17

16

15

14

13

12

8

9

11

10

18-pin PDIP, SOIC, Windowed CERDIP

MCLR/VPP

RA3/AN3/VREF

RB2/T1OSI

RB3/CCP1 RB4

RB5

RA1/AN1

VDD

OSC2/CLKOUT

VSS

P
IC

1
6
C
7
1
6

P
IC

1
6
C
7
1
2

RA2/AN2

RA4/T0CKI

RB0/INT

RB1/T1OSO/T1CKI

RA0/AN0

OSC1/CLKIN

RB7

RB6

• 1

2

3

4

5

6

7

20

19

18

17

16

15

14

8

9

13

12

20-pin SSOP

MCLR/VPP

RA3/AN3/VREF

RB2/T1OSI

RB3/CCP1 RB4

RB5

RA1/AN1

VDD

OSC2/CLKOUT

VSS

P
IC

1
6
C
7
1
6

10

VSS VDD

11

RA2

RA3

RA4/T0CKI

MCLR/VPP

VSS

RB0/INT

RB1

RB2

RB3

PDIP, SOIC, Windowed CERDIP
DS30228K-page 3-52  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
Pin Diagrams (Con’t)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

9 8 7 6 5 4 3 2 1

6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

RD5/SEG29/COM3
RG6/SEG26
RG5/SEG25
RG4/SEG24
RG3/SEG23
RG2/SEG22
RG1/SEG21
RG0/SEG20
RG7/SEG28
RF7/SEG19
RF6/SEG18
RF5/SEG17
RF4/SEG16
RF3/SEG15
RF2/SEG14
RF1/SEG13
RF0/SEG12

RA4/T0CKI

RA5/AN4/SS

RB1

RB0/INT

RC3/SCK/SCL

RC4/SDI/SDA

RC5/SDO

VLCD2

VLCD3

AVDD

VDD

VSS

C1

C2

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

R
A
3
/A
N
3
/V

R
E
F

R
A
2
/A
N
2

V
S
S

R
A
1
/A
N
1

R
A
0
/A
N
0

R
B
2

R
B
3

M
C
L
R
/V

P
P

N
C

R
B
4

R
B
5

R
B
7

R
B
6

V
D
D

C
O
M
0

R
D
7
/S
E
G
3
1
/C
O
M
1

R
D
6
/S
E
G
3
0
/C
O
M
2

R
C
1
/T
1
O
S
I

R
C
2
/C
C
P
1

V
L
C
D
1

V
L
C
D
A
D
J

R
D
0
/S
E
G
0
0

R
D
1
/S
E
G
0
1

R
D
2
/S
E
G
0
2

R
D
3
/S
E
G
0
3

R
D
4
/S
E
G
0
4

R
E
7
/S
E
G
2
7

R
E
0
/S
E
G
0
5

R
E
1
/S
E
G
0
6

R
E
2
/S
E
G
0
7

R
E
3
/S
E
G
0
8

R
E
4
/S
E
G
0
9

R
E
6
/S
E
G
1
1

R
E
5
/S
E
G
1
0

PLCC, CLCC

PIC16C92X
 2003 Microchip Technology Inc. DS30228K-page 3-53

PIC16C6XX/7XX/9XX
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to

0x1FFF (8K). Table 2-1 shows actual implementation

of program memory in the PIC16C6XX/7XX/9XX

family.

TABLE 2-1: IMPLEMENTATION OF

PROGRAM MEMORY IN THE

PIC16C6XX/7XX/9XX

When the PC reaches the last location of the imple-

mented program memory, it will wrap around and

address a location within the physically implemented

memory (see Figure 2-1).

Once in configuration memory, the highest bit of the PC

stays a '1', thus, always pointing to the configuration

memory. The only way to point to user program mem-

ory is to reset the part and re-enter Program/Verify

mode, as described in Section 2.2.

A user may store identification information (ID) in four

ID locations. The ID locations are mapped in [0x2000:

0x2003]. It is recommended that the user use only the

four Least Significant bits of each ID location. In some

devices, the ID locations read-out in a scrambled

fashion after code protection is enabled. For these

devices, it is recommended that ID location is written

as “11 1111 1bbb bbbb”, where 'bbbb' is ID
information.

In other devices, the ID locations read out normally,

even after code protection. To understand how the

devices behave, refer to Table 4-1.

To understand the scrambling mechanism after code

protection, refer to Section 3.1.

Device
Program Memory

Size

PIC16C61 0x000 – 0x3FF (1K)

PIC16C620/620A 0x000 – 0x1FF (0.5K)

PIC16C621/621A 0x000 – 0x3FF (1K)

PIC16C622/622A 0x000 – 0x7FF (2K)

PIC16C62/62A/62B 0x000 – 0x7FF (2K)

PIC16C63/63A 0x000 – 0xFFF (4K)

PIC16C64/64A 0x000 – 0x7FF (2K)

PIC16C65/65A/65B 0x000 – 0xFFF (4K)

PIC16CE623 0x000 – 0x1FF (0.5K)

PIC16CE624 0x000 – 0x3FF (1K)

PIC16CE625 0x000 – 0x7FF (2K)

PIC16C71 0x000 – 0x3FF (1K)

PIC16C710 0x000 – 0x1FF (0.5K)

PIC16C711 0x000 – 0x3FF (1K)

PIC16C712 0x000 – 0x3FF (1K)

PIC16C716 0x000 – 0x7FF (2K)

PIC16C72/72A 0x000 – 0x7FF (2K)

PIC16C73/73A/73B 0x000 – 0xFFF (4K)

PIC16C74/74A/74B 0x000 – 0xFFF (4K)

PIC16C66 0x000 – 0x1FFF (8K)

PIC16C67 0x000 – 0x1FFF (8K)

PIC16C76 0x000 – 0x1FFF (8K)

PIC16C77 0x000 – 0x1FFF (8K)

PIC16C745 0x000 – 0x1FFF (8K)

PIC16C765 0x000 – 0x1FFF (8K)

PIC16C773 0x000 – 0xFFF (4K)

PIC16C774 0x000 – 0xFFF (4K)

PIC16C923/924/925 0x000 – 0xFFF (4K)

PIC16C926 0x000 – 0x1FFF (8K)

Note: All other locations are reserved and should

not be programmed.
DS30228K-page 3-54  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
FIGURE 2-1: PROGRAM MEMORY MAPPING

0.5K

words

1K

words

2K

words

4K

words

8K

words

Implemented Implemented Implemented Implemented Implemented

Implemented Implemented Implemented

Reserved Implemented Implemented

Reserved Implemented Implemented

Reserved Implemented

Reserved Implemented

Implemented

Implemented

Reserved Reserved Reserved Reserved Reserved

Reserved Reserved Reserved Reserved Reserved

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration

Word

2000h

2001h

2002h

2003h

2004h

2005h

2006h

2007h

0h

1FFh

3FFh

400h

7FFh

800h

BFFh

C00h

FFFh

1000h

1FFFh

2008h

2100h

3FFFh
 2003 Microchip Technology Inc. DS30228K-page 3-55

PIC16C6XX/7XX/9XX
2.2 Program/Verify Mode

The Program/Verify mode is entered by holding pins

RB6 and RB7 low, while raising MCLR pin from VSS to

the appropriate VIHH (high voltage). Once in this mode,

the user program memory and the configuration mem-

ory can be accessed and programmed in serial fashion.

The mode of operation is serial, and the memory that is

accessed is the user program memory. RB6 is a

Schmitt Trigger input in this mode.

The sequence that enters the device into the

Programming/Verify mode places all other logic into the

RESET state (the MCLR pin was initially at VSS). This

means that all I/O are in the RESET state (high

impedance inputs).

2.2.1 PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7

pin is used for entering command bits and data

input/output during serial operation. To input a com-

mand, the clock pin (RB6) is cycled six times. Each

command bit is latched on the falling edge of the clock

with the Least Significant bit (LSb) of the command

being input first. The data on pin RB7 is required to

have a minimum setup and hold time (see AC/DC

specs), with respect to the falling edge of the clock.

Commands that have data associated with them (read

and load) are specified to have a minimum delay of

1 µs between the command and the data. After this
delay, the clock pin is cycled 16 times, with the first

cycle being a START bit and the last cycle being a

STOP bit. Data is also input and output LSb first. There-

fore, during a read operation, the LSb will be transmit-

ted onto pin RB7 on the rising edge of the second cycle,

and during a load operation, the LSb will be latched on

the falling edge of the second cycle. A minimum 1 µs
delay is also specified between consecutive com-

mands.

All commands are transmitted LSb first. Data words are

also transmitted LSb first. The data is transmitted on

the rising edge and latched on the falling edge of the

clock. To allow for decoding of commands and reversal

of data pin configuration, a time separation of at least

1 µs is required between a command and a data word
(or another command).

The commands that are available are listed

in Table 2-2.

2.2.1.1 Load Configuration

After receiving this command, the program counter

(PC) will be set to 0x2000. By then applying 16 cycles

to the clock pin, the chip will load 14-bits, a “data word”

as described above, to be programmed into the config-

uration memory. A description of the memory mapping

schemes for normal operation and Configuration mode

operation is shown in Figure 2-1. After the configura-

tion memory is entered, the only way to get back to the

user program memory is to exit the Program/Verify test

mode by taking MCLR low (VIL).

TABLE 2-2: COMMAND MAPPING

Note 1: The MCLR pin should be raised as

quickly as possible from VIL to VIHH. This

is to ensure that the device does not have

the PC incremented while in valid opera-

tion range.

2: Do not power any pin before VDD is

applied.

Command Mapping (MSb ... LSb) Data

Load Configuration 0 0 0 0 0 0 0, data(14), 0

Load Data 0 0 0 0 1 0 0, data(14), 0

Read Data 0 0 0 1 0 0 0, data(14), 0

Increment Address 0 0 0 1 1 0

Begin programming 0 0 1 0 0 0

End Programming 0 0 1 1 1 0

Note: The clock must be disabled during In-Circuit Serial ProgrammingTM.
DS30228K-page 3-56  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
FIGURE 2-2: PROGRAM FLOW CHART - PIC16C6XX/7XX/9XX PROGRAM MEMORY

Start

N = 1

Set VDD = VDDP*

Program Cycle

Read Data
Command

Data correct?

Apply 3N Additional
Program Cycles

All locations done?

Verify all locations
@ VDDMIN*
VPP = VIHH2

Data correct?

Verify all locations
@ VDDMAX*
VPP = VIHH2

Data correct?

Done

N > 25?
Report Programming

Failure

N = N + 1 N = #
of Program Cycles

Increment Address
Command

Report verify
@ VDDMIN Error

Report verify
@ VDDMAX Error

Load Data
Command

Begin Programming
Command

End Programming
Command

Wait 100 µs

Program Cycle

Yes

No

No
Yes

No

Yes

No

No

Yes

Yes

Set VPP = VIHH1

*VDDP = VDD range for programming (typically 4.75V - 5.25V).

VDDMIN = Minimum VDD for device operation.

VDDMAX = Maximum VDD for device operation.
 2003 Microchip Technology Inc. DS30228K-page 3-57

PIC16C6XX/7XX/9XX
FIGURE 2-3: PROGRAM FLOW CHART - PIC16C6XX/7XX/9XX CONFIGURATION WORD

AND ID LOCATIONS

VDDmin

VDDmax

Start

Load Configuration
Command

Increment Address
Command N = N + 1 N = #

of Program Cycles

Report ID
Configuration Error

Increment Address
Command

Increment Address
Command

Increment Address
Command

Program Cycle
100 Cycles

Read Data
Command

Apply 3N
Program Cycles

Read Data
Command

Report Program
ID/Config. Error

Set VDD = VDDMAX

Program Cycle

N = 1

 Data Correct?

 Data Correct?

 Data Correct?

 Data Correct?

 N > 25
 Address = 2004

 Program ID Loc?

Done

Yes

No

No

Yes
No

Yes

Yes

Yes

No

Yes

No

No

No Yes

Read Data Command
Set VPP = VIHH2

Set VDD = VDDMIN

Read Data Command
Set VPP = VIHH2

Set VDD = VDDP*

Set VPP = VIHH1

*VDDP = VDD range for programming (typically 4.75V - 5.25V).

VDDMIN = Minimum VDD for device operation.

VDDMAX = Maximum VDD for device operation.
DS30228K-page 3-58  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
2.2.1.2 Load Data

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied, as

described previously. A timing diagram for the load data

command is shown in Figure 4-1.

2.2.1.3 Read Data

After receiving this command, the chip will transmit

data bits out of the memory currently accessed, starting

with the second rising edge of the clock input. The RB7

pin will go into output mode on the second rising clock

edge, and it will revert back to input mode (hi-imped-

ance) after the 16th rising edge. A timing diagram of

this command is shown in Figure 4-2.

2.2.1.4 Increment Address

The PC is incremented when this command is

received. A timing diagram of this command is shown

in Figure 4-3.

2.2.1.5 Begin Programming

A load command (load configuration or load data)

must be given before every begin programming

command. Programming of the appropriate memory

(test program memory or user program memory) will

begin after this command is received and decoded.

Programming should be performed with a series of

100µs programming pulses. A programming pulse is
defined as the time between the begin programming

command and the end programming command.

2.2.1.6 End Programming

After receiving this command, the chip stops program-

ming the memory (configuration program memory or

user program memory) that it was programming at the

time.

2.3 Programming Algorithm Requires

Variable VDD

The PIC16C6XX/7XX/9XX family uses an intelligent

algorithm. The algorithm calls for program verification

at VDDMIN as well as VDDMAX. Verification at VDDMIN

guarantees a good “erase margin”. Verification at

VDDMAX guarantees a good “program margin”.

The actual programming must be done with VDD in the

VDDP range (4.75 - 5.25V):

VDDP = VCC range required during programming.

VDDMIN = minimum operating VDD spec for the part.

VDDMAX = maximum operating VDD spec for the part

Programmers must verify the PIC16C6XX/7XX/9XX at

its specified VDDMAX and VDDMIN levels. Since

Microchip may introduce future versions of the

PIC16C6XX/7XX/9XX with a broader VDD range, it is

best that these levels are user selectable (defaults are

OK).

Note: Any programmer not meeting these

requirements may only be classified as

“prototype” or “development” programmer,

but not a “production” quality programmer.
 2003 Microchip Technology Inc. DS30228K-page 3-59

PIC16C6XX/7XX/9XX
3.0 CONFIGURATION WORD

The PIC16C6XX/7XX/9XX family members have sev-

eral configuration bits. For all devices, these are part of

the Configuration Word, located at address 2007h.

These bits can be programmed (reads '0'), or left

unprogrammed (reads '1'), to select various device

configurations.

Because the PIC16C6XX/7XX/9XX family spans so

many devices, there are a number of different bit con-

figurations possible for the Configuration Word. Regis-

ters 3-1 through 3-7 provide details for each of the

seven distinct groups. Table 3-1 provides a cross-index

of a particular device name to its appropriate Configu-

ration Word listing.

Note: Throughout the PIC16C6XX/7XX/9XX

family, two different implementations of the

Power-up Timer Enable bit are used.

PWRTEN (timer enabled when bit is set to

‘1’) is used on some earlier PIC16C6X and

PIC16C7X devices. PWRTEN (timer

enabled when bit is set to ‘0’) is used for all

other devices. Please carefully note the

distinction between these two versions.

TABLE 3-1: PIC16C6XX/7XX/9XX DEVICES AND THEIR CONFIGURATION WORD REGISTERS

Device Register Page Device Register Page Device Register Page

PIC16C61 3-1 61 PIC16C72A 3-3 62 PIC16CE623 3-3 62

PIC16C62 3-2 61 PIC16C73 3-2 61 PIC16CE624 3-3 62

PIC16C62A 3-3 62 PIC16C73A 3-3 62 PIC16CE625 3-3 62

PIC16C62B 3-3 62 PIC16C73B 3-3 62 PIC16C710 3-4 63

PIC16C63 3-3 62 PIC16C74 3-2 61 PIC16C711 3-4 63

PIC16C63A 3-3 62 PIC16C74A 3-3 62 PIC16C712 3-3 62

PIC16C64 3-2 61 PIC16C74B 3-3 62 PIC16C716 3-3 62

PIC16C64A 3-3 62 PIC16C76 3-3 62 PIC16C745 3-6 65

PIC16C65 3-2 61 PIC16C77 3-3 62 PIC16C765 3-6 65

PIC16C65A 3-3 62 PIC16C620 3-3 62 PIC16C773 3-5 64

PIC16C65B 3-3 62 PIC16C620A 3-3 62 PIC16C774 3-5 64

PIC16C66 3-3 62 PIC16C621 3-3 62 PIC16C923 3-6 65

PIC16C67 3-3 62 PIC16C621A 3-3 62 PIC16C924 3-6 65

PIC16C71 3-1 61 PIC16C622 3-3 62 PIC16C925 3-7 66

PIC16C72 3-3 62 PIC16C622A 3-3 62 PIC16C926 3-7 66
DS30228K-page 3-60  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
REGISTER 3-1: CONFIGURATION WORD FOR PIC16C61/71 (ADDRESS 2007h)

REGISTER 3-2: CONFIGURATION WORD FOR PIC16C62/64/65/73/74 (ADDRESS 2007h)

— — — — — — — — — CP0 PWTREN WDTEN F0SC1 F0SC0

bit13 bit0

bit 13-5 Unimplemented: Read as ‘1’

bit 4 CP0: Code Protection bit

1 = Code protection off
0 = All memory code protected

bit 3 PWTREN: Power-up Timer Enable bit

1 = PWRT enabled

0 = PWRT disabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

— — — — — — — — CP1 CP0 PWTREN WDTEN F0SC1 F0SC0

bit13 bit0

bit 13-6 Unimplemented: Read as ‘1’

bit 5-4 CP<1:0>: Code Protection bits

11 = Code protection off
10 = Upper 1/2 memory code protected
01 = Upper 3/4 memory code protected
00 = All memory is protected

bit 3 PWTREN: Power-up Timer Enable bit(2)

1 = PWRT enabled

0 = PWRT disabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of

the value of bit PWTREN. Ensure the Power-up Timer is enabled any time Brown-out Reset

is enabled.
 2003 Microchip Technology Inc. DS30228K-page 3-61

PIC16C6XX/7XX/9XX
REGISTER 3-3: CONFIGURATION WORD FOR: PIC16C62A/62B/62C/63/63A/64A/65A/65B/66/67

PIC16C72/72A/73A/73B/74A/74B/76/77

PIC16C620/620A/621/621A/622/622A/712/716

PIC16CE623/624/625

(ADDRESS 2007h)

CP1 CP0 CP1 CP0 CP1 CP0 — BOREN CP1 CP0 PWTREN WDTEN F0SC1 F0SC0

bit13 bit0

bit 13-8

bit 5-4

CP<1:0>: Code Protection bits(1)

For all devices EXCEPT PIC16C620, PIC16C621, PIC16CE623 and PIC16CE624:

11 = Code protection off
10 = Upper 1/2 of program memory code protected
01 = Upper 3/4 of program memory code protected
00 = All memory is protected

For the PIC16C621 and PIC16CE624:

1x = Code protection off
01 = Upper 1/2 of program memory code protected
00 = All program memory is code protected

For the PIC16C620 and PIC16CE623:

1x,01 = Code protection off
00 = All program memory is code protected

bit 7 Unimplemented: Read as ‘1’

bit 6 BOREN: Brown-out Reset Enable bit(2)

1 = BOR enabled
0 = BOR disabled

bit 3 PWTREN: Power-up Timer Enable bit(2)

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: All of the CP<1:0> bit pairs have to be given the same value to enable the code protection

scheme listed.

2: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of

the value of bit PWTREN. Ensure the Power-up Timer is enabled any time Brown-out Reset

is enabled.
DS30228K-page 3-62  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
REGISTER 3-4: CONFIGURATION WORD, PIC16C710/711 (ADDRESS 2007h)

CP0 CP0 CP0 CP0 CP0 CP0 CP0 BOREN CP0 CP0 PWTREN WDTEN F0SC1 F0SC0

bit13 bit0

bit 13-7

bit 5-4

CP0: Code Protection bits(1)

1 = Code protection off
0 = All program memory is code protected, but 00h - 3Fh is writable

bit 6 BOREN: Brown-out Reset Enable bit(2)

1 = BOR enabled
0 = BOR disabled

bit 3 PWTREN: Power-up Timer Enable bit(2)

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: All of the CP0 bits have to be given the same value to enable the code protection scheme

listed.

2: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the

value of bit PWTREN. Ensure the Power-up Timer is enabled any time Brown-out Reset is

enabled.
 2003 Microchip Technology Inc. DS30228K-page 3-63

PIC16C6XX/7XX/9XX

0

it0
REGISTER 3-5: CONFIGURATION WORD, PIC16C773/774 (ADDRESS 2007h)

CP1 CP0 BORV1 BORV0 CP1 CP0 — BOREN CP1 CP0 PWTREN WDTEN F0SC1 F0SC

bit13 b

bit 13-7

bit 9-8

bit 5-4

CP<1:0>: Code Protection bits(1)

11 = Code protection off
10 = Upper 1/2 of program memory code protected
01 = Upper 3/4 of program memory code protected
00 = All program memory is code protected

bit 11-10 BORV <1:0>: Brown-out Reset Voltage bits

11 = VBOR set to 2.5V
10 = VBOR set to 2.7V
01 = VBOR set to 4.2V
00 = VBOR set to 4.5V

bit 6 BOREN: Brown-out Reset Enable bit(2)

1 = BOR enabled
0 = BOR disabled

bit 3 PWTREN: Power-up Timer Enable bit(2)

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: All of the CP<1:0> bits pairs have to be given the same value to enable the code protection

scheme listed.

2: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the

value of bit PWTREN. Ensure the Power-up Timer is enabled any time Brown-out Reset is

enabled.
DS30228K-page 3-64  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
REGISTER 3-6: CONFIGURATION WORD FOR: PIC16C745/765/923/924

(ADDRESS 2007h)

CP1 CP0 CP1 CP0 CP1 CP0 — — CP1 CP0 PWTREN WDTEN F0SC1 F0SC0

bit13 bit0

bit 13-8

bit 5-4

CP<1:0>: Code Protection bits(1)

11 = Code protection off
10 = Upper 1/2 of program memory code protected
01 = Upper 3/4 of program memory code protected
00 = All program memory is code protected

bit 7-6 Unimplemented: Read as ‘1’

bit 3 PWTREN: Power-up Timer Enable bit(2)

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

For PIC16745/765:

11 = E external clock with 4K PLL
10 = H HS oscillator with 4K PL enabled
01 = EC external clock with CLKOUT on OSC2
00 = HS oscillator

For PIC16923/924:

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: All of the CP<1:0> bits pairs have to be given the same value to enable the code protection

scheme listed.
 2003 Microchip Technology Inc. DS30228K-page 3-65

PIC16C6XX/7XX/9XX
REGISTER 3-7: CONFIGURATION WORD FOR PIC16C925/926 (ADDRESS 2007h)

— — — — — — — BOREN CP1 CP0 PWTREN WDTEN F0SC1 F0SC0

bit13 bit0

bit 13-7 Unimplemented: Read as ‘1’

bit 6 BOREN: Brown-out Reset Enable bit(1)

1 = BOR enabled
0 = BOR disabled

bit 5-4 CP<1:0>: Program Memory Code Protection bits

For PIC16C926:

11 = Code protection off
10 = Lower 1/2 of program memory code protected (0000h-0FFFh)
01 = All but last 256 bytes of program memory code protected (0000h-1EFFh)
00 = All memory is protected

For PIC16C925:

11 = Code protection off
10 = Lower 1/2 of program memory code protected (0000h-07FFh)
01 = All but last 256 bytes of program memory code protected (0000h-0EFFh)
00 = All program memory is protected

Note: For PIC16C925, address values of 1000h to 1FFFh wrap around to 0000h to 0FFFh.

bit 3 PWTREN: Power-up Timer Enable bit(1)

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the

value of bit PWTREN. Ensure the Power-up Timer is enabled any time Brown-out Reset is

enabled.
DS30228K-page 3-66  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
3.1 Embedding Configuration Word and ID Information in the HEX File

3.2 Checksum

3.2.1 CHECKSUM CALCULATIONS

Checksum is calculated by reading the contents of the

PIC16C6XX/7XX/9XX memory locations and adding

up the opcodes, up to the maximum user addressable

location, e.g., 0x1FF for the PIC16C74. Any carry bits

exceeding 16-bits are neglected. Finally, the configura-

tion word (appropriately masked) is added to the

checksum. Checksum computation for each member of

the PIC16C6XX/7XX/9XX devices is shown in

Table 3-2.

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The Least Significant 16 bits of this sum is the

checksum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

Note that some older devices have an additional value

added in the checksum. This is to maintain compatibil-

ity with older device programmer checksums.

To allow portability of code, the programmer is required to read the configuration word and ID locations from the HEX

file when loading the HEX file. If configuration word information was not present in the HEX file, then a simple warning

message may be issued. Similarly, while saving a HEX file, configuration word and ID information must be included.

An option to not include this information may be provided.

Microchip Technology Inc. feels strongly that this feature is beneficial to the end customer.

TABLE 3-2: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank

Value

0x25E6 at

0 and

Max

Address

PIC16C61 OFF

ON

SUM[0x000:0x3FF] + CFGW & 0x001F + 0x3FE0

SUM_XNOR7[0x000:0x3FF] + (CFGW & 0x001F | 0x0060)

0x3BFF

0xFC6F

0x07CD

0xFC15

PIC16C620 OFF

ON

SUM[0x000:0x1FF] + CFGW & 0x3F7F

SUM_ID + CFGW & 0x3F7F

0x3D7F

0x3DCE

0x094D

0x099C

PIC16C620A OFF

ON

SUM[0x000:0x1FF] + CFGW & 0x3F7F

SUM_ID + CFGW & 0x3F7F

0x3D7F

0x3DCE

0x094D

0x099C

PIC16C621 OFF

1/2

ALL

SUM[0x000:0x3FF] + CFGW & 0x3F7F

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x3B7F

0x4EDE

0x3BCE

0x074D

0x0093

0x079C

PIC16C621A OFF

1/2

ALL

SUM[0x000:0x3FF] + CFGW & 0x3F7F

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x3B7F

0x4EDE

0x3BCE

0x074D

0x0093

0x079C

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_XNOR7[a:b] =XNOR of the seven high order bits of memory location with the seven low order bits summed over

 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND

| = Bitwise OR
 2003 Microchip Technology Inc. DS30228K-page 3-67

PIC16C6XX/7XX/9XX
PIC16C622 OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16C622A OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16CE623 OFF

ON

SUM[0x000:0x1FF] + CFGW & 0x3F7F

SUM_ID + CFGW & 0x3F7F

0x3D7F

0x3DCE

0x094D

0x099C

PIC16CE624 OFF

1/2

ALL

SUM[0x000:0x3FF] + CFGW & 0x3F7F

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x3B7F

0x4EDE

0x3BCE

0x074D

0x0093

0x079C

PIC16CE625 OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16C62 OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x3FF] + SUM_XNOR7[0x400:0x7FF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x1FF] + SUM_XNOR7[0x200:0x7FF] + CFGW & 0x003F + 0x3F80

SUM_XNOR7[0x000:0x7FF] + CFGW & 0x003F + 0x3F80

0x37BF

0x37AF

0x379F

0x378F

0x038D

0x1D69

0x1D59

0x3735

PIC16C62A OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16C62B OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16C63 OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C63A OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C64 OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x3FF] + SUM_XNOR7[0x400:0x7FF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x1FF] + SUM_XNOR7[0x200:0x7FF] + CFGW & 0x003F + 0x3F80

SUM_XNOR7[0x000:0x7FF] + CFGW & 0x003F + 0x3F80

0x37BF

0x37AF

0x379F

0x378F

0x038D

0x1D69

0x1D59

0x3735

TABLE 3-2: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank

Value

0x25E6 at

0 and

Max

Address

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_XNOR7[a:b] =XNOR of the seven high order bits of memory location with the seven low order bits summed over

 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND

| = Bitwise OR
DS30228K-page 3-68  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
PIC16C64A OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16C65 OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F + 0x3F80

SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

0x2FBF

0x2FAF

0x2F9F

0x2F8F

0xFB8D

0x1569

0x1559

0x2F35

PIC16C65A OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C65B OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C66 OFF

1/2

3/4

ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F

SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x1F7F

0x39EE

0x2CDE

0x1FCE

0xEB4D

0xEBA3

0xDE93

0xEB9C

PIC16C67 OFF

1/2

3/4

ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F

SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x1F7F

0x39EE

0x2CDE

0x1FCE

0xEB4D

0xEBA3

0xDE93

0xEB9C

PIC16C710 OFF

ON

SUM[0x000:0x1FF] + CFGW & 0x3FFF

SUM[0x00:0x3F] + CFGW & 0x3FFF + SUM_ID

0x3DFF

0x3E0E

0x09CD

0xEFC3

PIC16C71 OFF

ON

SUM[0x000:0x3FF] + CFGW & 0x001F + 0x3FE0

SUM_XNOR7[0x000:0x3FF] + (CFGW & 0x001F | 0x0060)

0x3BFF

0xFC6F

0x07CD

0xFC15

PIC16C711 OFF

ON

SUM[0x000:0x03FF] + CFGW & 0x3FFF

SUM[0x00:0x3FF] + CFGW & 0x3FFF + SUM_ID

0x3BFF

0x3C0E

0x07CD

0xEDC3

PIC16C712 OFF

1/2

ALL

SUM[0x000:0x07FF] + CFGW & 0x3F7F

SUM[0x000:0x03FF] + CFGW & 3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x37CE

0x034D

0xF58A

0x039C

PIC16C716 OFF

1/2

3/4

ALL

SUM[0x000:0x07FF] + CFGW & 0x3F7F

SUM[0x000:0x03FF] + CFGW & 0x3F7F + SUM_ID

SUM]0x000:0x01FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16C72 OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

TABLE 3-2: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank

Value

0x25E6 at

0 and

Max

Address

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_XNOR7[a:b] =XNOR of the seven high order bits of memory location with the seven low order bits summed over

 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND

| = Bitwise OR
 2003 Microchip Technology Inc. DS30228K-page 3-69

PIC16C6XX/7XX/9XX
PIC16C72A OFF

1/2

3/4

ALL

SUM[0x000:0x7FF] + CFGW & 0x3F7F

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x1FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x377F

0x5DEE

0x4ADE

0x37CE

0x034D

0x0FA3

0xFC93

0x039C

PIC16C73 OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F + 0x3F80

SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

0x2FBF

0x2FAF

0x2F9F

0x2F8F

0xFB8D

0x1569

0x1559

0x2F35

PIC16C73A OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C73B OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C74 OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x7FF] + SUM_XNOR7[0x800:FFF] + CFGW & 0x003F + 0x3F80

SUM[0x000:0x3FF] + SUM_XNOR7[0x400:FFF] + CFGW & 0x003F + 0x3F80

SUM_XNOR7[0x000:0xFFF] + CFGW & 0x003F + 0x3F80

0x2FBF

0x2FAF

0x2F9F

0x2F8F

0xFB8D

0x1569

0x1559

0x2F35

PIC16C74A OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C74B OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F7F

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x51EE

0x40DE

0x2FCE

0xFB4D

0x03A3

0xF293

0xFB9C

PIC16C76 OFF

1/2

3/4

ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F

SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x1F7F

0x39EE

0x2CDE

0x1FCE

0xEB4D

0xEBA3

0xDE93

0xEB9C

PIC16C77 OFF

1/2

3/4

ALL

SUM[0x000:0x1FFF] + CFGW & 0x3F7F

SUM[0x000:0xFFF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:0x7FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x1F7F

0x39EE

0x2CDE

0x1FCE

0xEB4D

0xEBA3

0xDE93

0xEB9C

PIC16C773 OFF

1/2

3/4

ALL

SUM[0x000:0x0FFF] + CFGW & 0x3F7F

SUM[0x000:07FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:03FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0x55EE

0x48DE

0x3BCE

0xFB4D

0x07A3

0xFA93

0x079C

PIC16C774 OFF

1/2

3/4

ALL

SU:M[0x000:0FFF] + CFGW & 0x3F7F

SUM[0x000:07FF] + CFGW & 0x3F7F + SUM_ID

SUM[0x000:03FF] + CFGW & 0x3F7F + SUM_ID

CFGW & 0x3F7F + SUM_ID

0x2F7F

0X55EE

0X48DE

0x3BCE

0xFB4D

0x07A3

0xFA93

0X079C

TABLE 3-2: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank

Value

0x25E6 at

0 and

Max

Address

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_XNOR7[a:b] =XNOR of the seven high order bits of memory location with the seven low order bits summed over

 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND

| = Bitwise OR
DS30228K-page 3-70  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
PIC16C923

PIC16C925

OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F3F

SUM[0x000:0x7FF] + CFGW & 0x3F3F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID

CFGW & 0x3F3F + SUM_ID

0x2F3F

0x516E

0x405E

0x2F4E

0xFB0D

0x0323

0xF213

0xFB1C

PIC16C924

PIC16C926

OFF

1/2

3/4

ALL

SUM[0x000:0xFFF] + CFGW & 0x3F3F

SUM[0x000:0x7FF] + CFGW & 0x3F3F + SUM_ID

SUM[0x000:0x3FF] + CFGW & 0x3F3F + SUM_ID

CFGW & 0x3F3F + SUM_ID

0x2F3F

0x516E

0x405E

0x2F4E

0xFB0D

0x0323

0xF213

0xFB1C

PIC16C745 OFF

1000:1FFF

800:1FFF

ALL

SUM(0000:1FFF) + CFGW & 0x3F3F

SUM(0000:0FFF) + CFGW & 0x3F3F+SUM_ID

SUM(0000:07FF) + CFGW & 0x3F3F + SUM_ID

CFGW * 0x3F3F + SUM_ID

0x1F3F

0x396E

0x2C5E

0x1F4E

0xEB0D

0xEB23

0xDE13

0xEB1C

PIC16C765 OFF

1000:1FFF

800:1FFF

ALL

SUM(0000:1FFF) + CFGW & 0x3F3F

SUM(0000:0FFF) + CFGW & 0x3F3F+SUM_ID

SUM(0000:07FF) + CFGW & 0x3F3F + SUM_ID

CFGW * 0x3F3F + SUM_ID

0x1F3F

0x396E

0x2C5E

0x1F4E

0xEB0D

0xEB23

0xDE13

0xEB1C

TABLE 3-2: CHECKSUM COMPUTATION (CONTINUED)

Device
Code

Protect
Checksum*

Blank

Value

0x25E6 at

0 and

Max

Address

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a through b inclusive]

SUM_XNOR7[a:b] =XNOR of the seven high order bits of memory location with the seven low order bits summed over

 locations a through b inclusive. For example, XNOR(0x3C31)=0x78 XNOR 0c31 = 0x0036.

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example,

 ID0 = 0x12, ID1 = 0x37, ID2 = 0x4, ID3 = 0x26, then SUM_ID = 0x2746.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND

| = Bitwise OR
 2003 Microchip Technology Inc. DS30228K-page 3-71

PIC16C6XX/7XX/9XX
4.0 PROGRAM/VERIFY MODE

TABLE 4-1: AC/DC CHARACTERISTICS

TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10°C ≤ TA ≤ +40°C,unless otherwise stated (20°C recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated

Parameter

No.
Sym. Characteristic Min. Typ. Max. Units Conditions

 General

PD1 VDDP Supply voltage during programming 4.75 5.0 5.25 V

PD2 IDDP Supply current (from VDD)

during programming

– – 20 mA

PD3 VDDV Supply voltage during verify VDDMIN – VDDMAX V (Note 1)

PD4 VIHH1 Voltage on MCLR/VPP during

programming

12.75 – 13.25 V (Note 2)

PD5 VIHH2 Voltage on MCLR/VPP during verify VDD + 4.5 – 13.25 –

PD6 IPP Programming supply current

(from VPP)

– – 50 mA

PD9 VIH (RB6, RB7) input high level 0.8 VDD – – V Schmitt Trigger input

PD8 VIL (RB6, RB7) input low level 0.2 VDD – – V Schmitt Trigger input

 Serial Program Verify

P1 TR MCLR/VPP rise time (VSS to VHH)

for Test mode entry

– – 8.0 µs

P2 Tf MCLR fall time – – 8.0 µs

P3 Tset1 Data in setup time before clock ↓ 100 – – ns

P4 Thld1 Data in hold time after clock ↓ 100 – – ns

P5 Tdly1 Data input not driven to next clock input

(delay required between command/data

or command/command)

1.0 – – µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 – – µs

P7 Tdly3 Clock ↑ to date out valid
(during read data)

200 – – ns

P8 Thld0 Hold time after MCLR ↑ 2 – – µs

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.

2: VIHH must be greater than VDD + 4.5V to stay in Programming/Verify mode.
DS30228K-page 3-72  2003 Microchip Technology Inc.

PIC16C6XX/7XX/9XX
FIGURE 4-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 4-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 4-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}

000

1 µs min.

P5

1µs min.

P6

0

155432165

0

43

0

100 ns

P4

1

100 ns
min.

P3

21

100 ns
P8

VIHH

 RB6
(Clock)

RB7
(Data)

0

MCLR/VPP

}}

P4

100 ns
min.

P3

}

00

1 µs min.

P5

1 µs min.

P6

155432165

0

43

0
100 ns

P4

1

100 ns
min.

P3

21

100 ns
P8

VIHH

 RB6
(Clock)

RB7
(Data)

0

MCLR/VPP

RB7 = Output
RB7
Input

P7

}

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100 ns
min.

P3 P4

P6

1 µs min.
Next Command

P5

1 µs min.

VIHH

MCLR/VPP

RB6
(Clock)

(Data)
RB7
 2003 Microchip Technology Inc. DS30228K-page 3-73

PIC16C6XX/7XX/9XX
NOTES:
DS30228K-page 3-74  2003 Microchip Technology Inc.

PIC17C7XX
In-Circuit Serial Programming for PIC17C7XX OTP MCUs
This document includes the programming

specifications for the following devices:

• PIC17C752

• PIC17C756

• PIC17C756A

• PIC17C762

• PIC17C766

1.0 PROGRAMMING THE
PIC17C7XX

The PIC17C7XX is programmed using the TABLWT

instruction. The table pointer points to the internal

EPROM location start. Therefore, a user can program

an EPROM location while executing code (even from

internal EPROM). This programming specification

applies to PIC17C7XX devices in all packages.

For the convenience of a programmer developer, a

“program & verify” routine is provided in the on-chip test

program memory space. The program resides in ROM

and not EPROM, therefore, it is not erasable. The “pro-

gram/verify” routine allows the user to load any

address, program a location, verify a location or incre-

ment to the next location. It allows variable program-

ming pulse width.

The PIC17C7XX group of the High End Family has

added a feature that allows the serial programming of

the device. This is very useful in applications where it is

desirable to program the device after it has been man-

ufactured into the users system (In-circuit Serial Pro-

gramming (ISP)). This allows the product to be shipped

with the most current version of the firmware, since the

microcontroller can be programmed just before final

test as opposed to before board manufacture. Devices

may be serialized to make the product unique, “special”

variants of the product may be offered, and code

updates are possible. This allows for increased design

flexibility.

1.1 Hardware Requirements

Since the PIC17C7XX under programming is actually

executing code from “boot ROM,” a clock must be pro-

vided to the part. Furthermore, the PIC17C7XX under

programming may have any oscillator configuration

(EC, XT, LF or RC). Therefore, the external clock driver

must be able to overdrive pulldown in RC mode. CMOS

drivers are required since the OSC1 input has a

Schmitt trigger input with levels (typically) of 0.2 VDD

and 0.8 VDD. See the PIC17C7XX data sheet

(DS30289) for exact specifications.

The PIC17C7XX requires two programmable power

supplies, one for VDD (3.0V to 5.5V recommended) and

one for VPP (13 ± 0.25V). Both supplies should have a

minimum resolution of 0.25V.

The PIC17C7XX uses an intelligent algorithm. The

algorithm calls for program verification at VDDmin as

well as VDDmax. Verification at VDDmin guarantees

good “erase margin”. Verification at VDDmax guaran-

tees good “program margin.” Three times (3X)

additional pulses will increase program margin beyond

VDDmax and insure safe operation in user system.

The actual programming must be done with VDD in the

VDDP range (Parameter PD1).

VDDP = VDD range required during programming.

VDDmin. = minimum operating VDD spec. for the part.

VDDmax. = maximum operating VCC spec for the part.

Programmers must verify the PIC17C7XX at its speci-

fied VDDmax and VDDmin levels. Since Microchip may

introduce future versions of the PIC17C7XX with a

broader VDD range, it is best that these levels are user

selectable (defaults are ok). Blank checks should be

performed at VDDMIN.

Note: Any programmer not meeting these

requirements may only be classified as

“prototype” or “development” programmer

but not a “production” quality programmer.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJTR

PIC17C7XX
FIGURE 1-1: PIC17C752/756/756A/762/766 LCC

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING IN PARALLEL MODE): PIC17C7XX

Pin Name

During Programming

Pin Name Pin Type Pin Description

RA4:RA0 RA4:RA0 I Necessary in programming mode

TEST TEST I Must be set to “high” to enter programming mode

PORTB<7:0> DAD15:DAD8 I/O Address & data: high byte

PORTC<7:0> DAD7:DAD0 I/O Address & data: low byte

MCLR/VPP VPP P Programming Power

VDD VDD P Power Supply

VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

NM

NN

NO

NP

NQ

NR

NS

NT

NU

NV

OM

ON

OO

OP

OQ

OR

OS

SM

RV

RU

RT

RS

RR

RQ

RP

RO

RN

RM

QV

QU

QT

QS

QR

QQ

V U T S R Q P O N SU ST SS SR SQ SP SO SN

OTOU OVPM PNPO PP PQ PR PS PT PU PV QM QN QO QP

Top View

o^MLfkq

o_ML`^mN

o_NL`^mO

o_PLmtjO

o_QLq`ihNO

o_RLq`ihP

o_OLmtjN

spp

k`

lp`OL`ihlrq

lp`NL`ihfk

saa

o_TLpal

o^PLpafLpa^

o^OLppLp`i

o^NLqM`hf

oaNL^aV

oaML^aU

obML^ib

obNLlb

obOLto

obPL`^mQ

j`ioLsmm

qbpq

spp

saa

ocTL^kNN

ocSL^kNM

ocRL^kV

ocQL^kU

ocPL^kT

ocOL^kS

o
a
O
L^
a
N
M

o
a
P
L^
a
N
N

o
a
Q
L^
a
N
O

o
a
R
L^
a
N
P

o
a
S
L^
a
N
Q

o
a
T
L^
a
N
R

o
`
M
L^
a
M

s
a
a

k
`

s
p
p

o
`
N
L^
a
N

o
`
O
L^
a
O

o
`
P
L^
a
P

o
`
Q
L^
a
Q

o
`
R
L^
a
R

o
`
S
L^
a
S

o
`
T
L^
a
T

o
c
N
L^
k
R

o
c
M
L^
k
Q

^
s
a
a

^
s
p
p

o
d
P
L^
k
M
Ls

o
b
c
H

o
d
O
L^
k
N
Ls

o
b
c
J

o
d
N
L^
k
O

o
d
M
L^
k
P

k
`

s
p
p

s
a
a

o
d
Q
L`
^
m
P

o
d
R
Lm
t
j
P

o
d
T
Lq
u
O
L`
h
O

o
d
S
Lo
u
O
La
q
O

o
^
Q
Lo
u
N
La
q
N

o
^
R
Lq
u
N
L`
h
N

k`

o_SLp`h

o
c
N
L^
k
R

o
c
M
L^
k
Q

^
s
a
a

^
s
p
p

o
d
P
L^
k
M
Ls

o
b
c
H

o
d
O
L^
k
N
Ls

o
b
c
J

o
d
N
L^
k
O

o
d
M
L^
k
P

k
`

s
p
p

s
a
a

o
d
Q
L`
^
m
P

o
d
R
Lm
t
j
P

o
d
T
Lq
u
O
L`
h
O

o
d
S
Lo
u
O
La
q
O

o
^
Q
Lo
u
N
La
q
N

o
^
R
Lq
u
N
L`
h
N

o
g
M

o
g
N

o
e
S
L^
k
N
Q

o
e
T
L^
k
N
R

oaNL^aV

oaML^aU

obML^ib

obNLlb

obOLto

obPL`^mQ

j`ioLsmm

qbpq

spp

saa

ocTL^kNN

ocSL^kNM

ocRL^kV

ocQL^kU

ocPL^kT

ocOL^kS

k`

oeO

oeP

oeQL^kNO

oeRL^kNP

NMNN

NO

NP

NQ

NR

NS

NT

NU

NV

OM

ON

OO

OP

OQ

OR

OS SM

RV

RU

RT

RS

RR

RQ

RPRORNRMQVQUQTQSQRQQ

V U T S R Q P O N

OT

OU

OV

PM

PN

PO

PPPQPRPSPTPUPVQMQNQOQP

Top View

o^MLfkq

o_ML`^mN

o_NL`^mO

o_PLmtjO

o_QLq`ihNO

o_RLq`ihP

o_OLmtjN

spp

k`

lp`OL`ihlrq

lp`NL`ihfk

saa

o_TLpal

o^PLpafLpa^

o^OLppLp`i

o^NLqM`hf

o
a
O
L^
a
N
M

o
a
P
L^
a
N
N

o
a
Q
L^
a
N
O

o
a
R
L^
a
N
P

o
a
S
L^
a
N
Q

o
a
T
L^
a
N
R

o
`
M
L^
a
M

s
a
a

k
`

s
p
p

o
`
N
L^
a
N

o
`
O
L^
a
O

o
`
P
L^
a
P

o
`
Q
L^
a
Q

o
`
R
L^
a
R

o
`
S
L^
a
S

o
`
T
L^
a
T

o_SLp`h

ogR

ogQ

o
g
T

o
g
S

ogP

ogO

o
e
N

o
e
M

ST

SS

SR

SQ

SP

SO

SN

SU

TQ

TP

TO

TN

TM

TSTVTUTTUMUPUOUNUQ TR

SV

PIC17C762/766

PIC17C752/756/756A
apPMOTQ_Jé~ÖÉ=PJTS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
2.0 PARALLEL MODE PROGRAM
ENTRY

To execute the programming routine, the user must

hold TEST pin high, RA2, RA3 must be low and RA4

must be high (after power-up) while keeping MCLR low

and then raise MCLR pin from VIL to VDD or VPP. This

will force FFE0h in the program counter and execution

will begin at that location (the beginning of the boot

code) following reset.

All unused pins during programming are in hi-imped-

ance state.

PORTB (RB pins) has internal weak pull-ups which are

active during the programming mode. When the TEST

pin is high, the Power-up timer (PWRT) and Oscillator

Start-up Timers (OST) are disabled.

2.1 Program/Verify Mode

The program/verify mode is intended for full-feature

programmers. This mode offers the following capabili-

ties:

a) Load any arbitrary 16-bit address to start pro-

gram and/or verify at that location.

b) Increment address to program/verify the next

location.

c) Allows arbitrary length programming pulse width.

d) Following a “verify” allows option to program the

same location or increment and verify the next

location.

e) Following a “program” allows options to program

the same location again, verify the same loca-

tion or to increment and verify the next location.

FIGURE 2-1: PROGRAMMING/VERIFY STATE DIAGRAM

Note: The Oscillator must not have 72 OSC

clocks while the device MCLR is between

VIL and VIHH.

Reset
Jump to
Program
Routine

Load
Address

Reset

Pulse
RA1

Pulse
RA1

Pulse RA1
(Raise RA1
after RA0Ø)

RA0↑

ProgramRaise RA1
before RA0↓

Pulse RA0
(RA0 pulse
width is
programming time)

Increment
Address

Pulse
RA1
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJTT

PIC17C7XX
2.1.1 LOADING NEW ADDRESS

The program allows new address to be loaded right out

of reset. A 16-bit address is presented on ports B (high

byte) and C (low byte) and the RA1 is pulsed (0 Æ 1,

then 1 Æ 0). The address is latched on the rising edge

of RA1. See timing diagrams for details. After loading

an address, the program automatically goes into a “ver-

ify cycle.” To load a new address at any time, the

PIC17C7XX must be reset and the programming mode

re-entered.

2.1.2 VERIFY (OR READ) MODE

“Verify mode” can be entered from “Load address”

mode, “program mode” or “verify mode.” In verify mode

pulsing RA1 will turn on PORTB and PORTC output

drivers and output the 16-bit value from the current

location. Pulsing RA1 again will increment location

count and be ready for the next verify cycle. Pulsing

RA0 will begin a program cycle.

2.1.3 PROGRAM CYCLE

“Program cycle” is entered from “verify cycle” or pro-

gram cycle” itself. After a verify, pulsing RA0 will begin

a program cycle. 16-bit data must be presented on

PORTB (high byte) and PORTC (low byte) before RA0

is raised.

The data is sampled 3 TCY cycles after the rising edge

of RA0. Programming continues for the duration of RA0

pulse.

At the end of programming, the user can choose one of

three different routes. If RA1 is kept low and RA0 is

pulsed again, the same location will be programmed

again. This is useful for applying over programming

pulses. If RA1 is raised before RA0 falling edge, then a

verify cycle is started without address increment. Rais-

ing RA1 after RA0 goes low will increment address and

begin verify cycle on the next address.

FIGURE 2-2: PIC17C7XX PROGRAM MEMORY MAP

FOSC0

FOSC1

WDTPS0

WDTPS1

PM0

PM1

PM2

Reserved

Reserved

Reserved

FE00h

FE01h

FE02h

FE03h

FE04h

FE05h

FE06h

FE07h

FE08h

FE09h

FE0Fh

Reserved

BODENFE0Eh

On-chip

Program

EPROM

Configuration
Word

0000h

1FFFh

FE00h

FE0Fh

FFFFh

On-chip

Program

EPROM

Configuration
Word

On-chip

Program

EPROM

Configuration
Word

On-chip

Program

EPROM

Configuration
Word

PIC17C752 PIC17C756/756A PIC17C762 PIC17C766

3FFFh

PIC17C762
apPMOTQ_Jé~ÖÉ=PJTU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
3.0 PARALLEL MODE PROGRAMMING SPECIFICATIONS

FIGURE 3-1: PROGRAMMING ROUTINE FLOWCHART

RESET

RA2 = 0
RA3 = 0
RA4 = 1

MCLR = 1
Bport = 0xE1
(hold for 10 TCY)

Present address
on ports RB, RC
hold TCY after
RA1 changes
to 1

RA1 = 0

RA1 = 1

Stop driving
address on ports

RA1 = 0

RA1 = 1

B port =
MSB of Data

C port =
LSB of Data

Read MSB of data
from portB.

Read LSB of data
from portC

Enable RA0 to end
program cycle

Program
16-bit
data

RA0 = 0

RA1 = 0

Bport = xxx

Bport = xxx

RA1 = 0

RA1 = 1

RA1 = 0

B and C
ports not

driven by part

If programming is desired
force portB = MSB of data
force portC = LSB of data
(hold 10 Tcy after RA0
is raised)

RA0 = 1

RA1 = 1

Increment
Address

YES

YES

YES

YES

NO

NO

NO

NO

YES

YES

YES

NO

NO

NO

NO

NO

RA0 = 1

RA1 = 1

NO

NO

YES
YES

YES

YES

YES

NO

NO

- B port is forced by the part

- B port tristate, should be forced by user

Min RA + high or low = 10 TCY

RA2 = 0
RA3 = 0
RA4 = 1
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJTV

PIC17C7XX
FIGURE 3-2: RECOMMENDED PROGRAMMING ALGORITHM FOR USER EPROM

Apply (3x Pulse-count)
more 100 µs programming

pulses for margin
(Over programming)

Start

Load new address
Pulse-count = 0

Set VDD = VDDMIN

Verify blank

Pulse
Blank

Check?

Load new data

Set VDD to VDDP

Program using 100 µs
pulse increment

pulse-count

Verify location
for correct date

Pass?

Pulse-
Count
>25

Location fails
programming issue error

message “Unable to
programming location”

Issue “Blank check fail”
error message

Pass?

Set VDD = VDDMIN

verify location

Set VDD = VDDMIN

verify location(s)

Program error message
Issue error message

“Fail verify @ VDDMIN/MAX”

Set VDD = VDDMIN

YES

NO

NO

YES

YES

NO

NO

YES
apPMOTQ_Jé~ÖÉ=PJUM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
FIGURE 3-3: RECOMMENDED PROGRAMMING ALGORITHM FOR CONFIGURATION WORDS

Load new address
Pulse-count = 0

Set VDD = VDDmin

Verify blank

Issue “blank check fail”

Load new data

Set VDD = VDDP

Set VDD = VDDmax

Set Vaa = Vaamin
Verify location for

Program using 100 ms

Location fails

Programming error:

NO

YES

NO

NO

YES

YES

Start

Pass
Blank

check?

pulse increment
pulse-count

Pass?

Issue error message

“Fail verify @ VDDmin/max”

Verify location(s)

Pass?

NO

YES Pulse
count
<100

programming, issue error

message “Unable to
program location”

correct data

error message

Set VDD = VDDMIN

Set VDD = VDDmin
Verify location
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJUN

PIC17C7XX
4.0 SERIAL MODE PROGRAM
ENTRY

4.1 Hardware Requirements

Certain design criteria must be taken into account for

ISP. Seven pins are required for the interface. These

are shown in Table 4-1.

4.2 Serial Program Mode Entry

To place the device into the serial programming test

mode, two pins will need to be placed at VIHH. These

are the TEST pin and the MCLR/VPP pins. Also, the fol-

lowing sequence of events must occur:

1. The TEST pin is placed at VIHH.

2. The MCLR/VPP pin is placed at VIHH.

There is a setup time between step 1 and step 2 that

must be meet (See “Electrical Specifications for Serial

Programming Mode” on page 97.)

After this sequence the Program Counter is pointing to

Program Memory Address 0xFF60. This location is in

the Boot ROM. The code initializes the USART/SCI so

that it can receive commands. For this the device must

be clocked. The device clock source in this mode is the

RA1/T0CKI pin. Once the USART/SCI has been initial-

ized, commands may be received. The flow is show in

these 3 steps:

1. The device clock source starts.

2. Wait 80 device clocks for Boot ROM code

to configure the USART/SCI.

3. Commands may be sent now.

TABLE 4-1: ISP Interface Pins

During Programming

Name Function Type Description

RA4/RX/DT DT I/O Serial Data

RA5/TX/CK CK I Serial Clock

RA1/T0CKI OSCI I Device Clock Source

TEST TEST I Test mode selection control input. Force to VIHH,

MCLR/VPP MCLR/VPP P Programming Power

VDD VDD P Power Supply

VSS VSS P Ground
apPMOTQ_Jé~ÖÉ=PJUO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
4.3 Software Commands

This feature is similar to that of the PIC16CXXX mid-

range family, but the programming commands have

been implemented in the device Boot ROM. The Boot

ROM is located in the program memory from 0xFF60 to

0xFFFF. The ISP mode is entered when the TEST pin

has a VIHH voltage applied. Once in ISP mode, the

USART/SCI module is configured as a synchronous

slave receiver, and the device waits for a command to

be received. The ISP firmware recognizes eight com-

mands. These are shown in Table 4-2.

TABLE 4-2: ISP COMMANDS

4.3.1 RESET PROGRAM MEMORY POINTER

This is used to clear the address pointer to the Program

Memory. This ensures that the pointer is at a known

state as well as pointing to the first location in program

memory.

4.3.2 INCREMENT ADDRESS

This is used to increment the address pointer to the

Program Memory. This is used after the current loca-

tion has been programmed (or read).

FIGURE 4-1: RESET ADDRESS POINTER COMMAND (PROGRAM/VERIFY)

FIGURE 4-2: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

Command Value

RESET PROGRAM

MEMORY POINTER

0000 0000

LOAD DATA 0000 0010

READ DATA 0000 0100

INCREMENT ADDRSS 0000 0110

BEGIN PROGRAMMING 0000 1000

LOAD ADDRESS 0000 1010

READ ADDRESS 0000 1100

END PROGRAMMING 0000 1110

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O

M M M M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpS

sfee

mpP

mpQmpR

mpN

Ekbuq=`ljj^kaF

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O

M N N M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpS

sfee

mpP

mpQmpR

mpN

Ekbuq=`ljj^kaF
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJUP

PIC17C7XX
4.3.3 LOAD ADDRESS

This is used to load the address pointer to the Program

Memory with a specific 16-bit value. This is useful when

a specific range of locations are to be accessed.

4.3.4 READ ADDRESS

This is used so that the current address in the Program

Memory pointer can be determined. This can be used

to increase the robustness of the ISP programming

(ensure that the Program Memory pointers are still in

sync).

FIGURE 4-3: LOAD ADDRESS COMMAND

FIGURE 4-4: READ ADDRESS COMMAND

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M N M N M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpT

sfee

mpP

mpQmpR

mpN

mpS

Ekbuq=`ljj^kaF

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M M N N M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpU

sfee

mpP

mpQmpR

RA4 = Output

mpS

mpN

mpV

Ekbuq=`ljj^kaF
apPMOTQ_Jé~ÖÉ=PJUQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
4.3.5 LOAD DATA

This is used to load the 16-bit data that is to be pro-

grammed into the Program Memory location. The Pro-

gram Memory address may be modified after the data

is loaded. This data will not be programmed until a

BEGIN PROGRAMMING command is executed.

4.3.6 READ DATA

This is used to read the data in Program Memory that

is pointed to by the current address pointer. This is use-

ful for doing a verify of the programming cycle and can

be used to determine the number for programming

cycles that are required for the 3X overprogramming.

FIGURE 4-5: LOAD DATA COMMAND

FIGURE 4-6: READ DATA COMMAND

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M N M M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpT

sfee

mpP

mpQmpR

mpN

pmS

Ekbuq=`ljj^kaF

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M M N M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpU

sfee

mpP

mpQmpR

RA4 = Output

mpS

mpN

mpV

Ekbuq=`ljj^kaF
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJUR

PIC17C7XX
4.3.7 BEGIN PROGRAMMING

This is used to program the current 16-bit data (last

data sent with LOAD DATA Command) into the Pro-

gram Memory at the address specified by the current

address pointer. The programming cycle time is speci-

fied by specification P10. After this time has elapsed,

any command must be sent, which wakes the proces-

sor from the Long Write cycle. This command will be

the next executed command.

4.3.8 3X OVERPROGRAMMING

Once a location has been both programmed and veri-

fied over a range of voltages, 3X overprogramming

should be applied. In other words, apply three times the

number of programming pulses that were required to

program a location in memory, to ensure a solid pro-

gramming margin.

This means that every location will be programmed a

minimum of 4 times (1 + 3X overprogramming).

FIGURE 4-7: BEGIN PROGRAMMING COMMAND (PROGRAM)

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O

M M M N M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpNM

sfee

mpP

mpQmpR

mpN

Ekbuq=`ljj^kaF

T U
apPMOTQ_Jé~ÖÉ=PJUS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
FIGURE 4-8: RECOMMENDED PROGRAMMING FLOWCHART

ISP Command
INCREMENT ADDRESS

or

LOAD ADDRESS

START

TEST = Vihh

MCLR = Vihh

N = 1

ISP Command

RESET ADDRESS

ISP Command

LOAD DATA

ISP Command

BEGIN PROGRAMMING

Wait approx 100 ms

ISP Command

READ DATA

Data Correct? N = N + 1

N > 25?

Report

Programming

Failure

ISP Command
BEGIN PROGRAMMING

Wait approx 100 ms

N = N - 1

N = 0?

Programmed all
required locations?

4.75V < VDD < 5.25V

Start Device Clock (on RA0),

TEST = MCLR = RA4 = RA5 = Vss

YesNo

Wait 80 Device Clocks

N = 3N

Verify all Locations

@ Vddmin

Data Correct?

Report

@ Vddmin

Verify all Locations

@ Vddmax

DONE

Data Correct?
Verify

Error

Report

@ Vddmax

Verify

Error

No

Yes

No

No

Yes

Yes

No

Yes

YesNo
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJUT

PIC17C7XX
5.0 CONFIGURATION WORD

Configuration bits are mapped into program memory.

Each bit is assigned one memory location. In erased

condition, a bit will read as ‘1’. To program a bit, the

user needs to write to the memory address. The data is

immaterial; the very act of writing will program the bit.

The configuration word locations are shown in

Table 5-3. The programmer should not program the

reserved locations to avoid unpredictable results

and to be compatible with future variations of the

PIC17C7XX. It is also mandatory that configuration

locations are programmed in the strict order start-

ing from the first location (0xFE00) and ending with

the last (0xFE0F). Unpredictable results may occur

if the sequence is violated.

5.1 Reading Configuration Word

The PIC17C7XX has seven configuration locations

(Table 5-1). These locations can be programmed (read

as ‘0’) or left unprogrammed (read as ‘1’) to select var-

ious device configurations. Any write to a configuration

location, regardless of the data, will program that con-

figuration bit. Reading any configuration location

between 0xFE00 and 0xFE07 will place the low byte of

the configuration word (Table 5-2) into DAD<7:0>

(PORTC). DAD<15:8> (PORTD) will be set to 0xFF.

Reading a configuration location between 0xFE08 and

0xFE0F will place the high byte of the configuration

word into DAD<7:0> (PORTC). DAD<15:8> (PORTD)

will be set to 0xFF.

TABLE 5-1: CONFIGURATION BIT

PROGRAMMING LOCATIONS

TABLE 5-2: READ MAPPING OF CONFIGURATION BITS

Bit Address

FOSC0 0xFE00

FOSC1 0xFE01

WDTPS0 0xFE02

WDTPS1 0xFE03

PM0 0xFE04

PM1 0xFE06

BODEN 0xFE0E

PM2 0xFE0F

—=Unused

PM<2:0>, Processor Mode Select bits

111 = Microprocessor mode

110 = Microcontroller mode

101 = Extended Microcontroller mode

000 = Code protected microcontroller mode

BODEN, Brown-out Detect Enable

1 = Brown-out Detect Circuitry enabled

0 = Brown-out Detect Circuitry disabled

WDTPS1:WDTPS0, WDT Prescaler Select bits.

11 = WDT enabled, postscaler = 1

10 = WDT enabled, postscaler = 256

01 = WDT enabled, postscaler = 64

00 = WDT disabled, 16-bit overflow timer

FOSC1:FOSC0, Oscillator Select bits

11 = EC oscillator

10 = XT oscillator

01 = RC oscillator

00 = LF oscillator

WDTPS1 FOSC1 FOSC0WDTPS0PM0PM1 ——

PM2

11111111

11111111 BODEN PM2 PM2

89101112131415 01234567

PM2 PM2PM2

89101112131415 01234567

PM2
apPMOTQ_Jé~ÖÉ=PJUU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
5.2 Embedding Configuration Word Information in the Hex File

5.3 Reading From and Writing To a Code

Protected Device

When a device is code-protected, writing to program

memory is disabled. If program memory is read, the

value returned is the XNOR8 result of the actual pro-

gram memory word. The XNOR8 result is the upper

eight bits of the program memory word XNOR’d with

the lower eight bits of the same word. This 8-bit result

is then duplicated into both the upper and lower 8-bits

of the read value. The configuration word can always

be read and written.

To allow portability of code, a PIC17C7XX programmer is required to read the configuration word locations from the

hex file when loading the hex file. If the configuration word information was not present in the hex file, then a simple

warning message may be issued. Similarly, while saving a hex file, all configuration word information must be included.

An option to not include the configuration word information may be provided. When embedding configuration word

information in the hex file, it should be to address FE00h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJUV

PIC17C7XX
5.4 CHECKSUM COMPUTATION

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The least significant 16 bits of this sum is the check-

sum.

Table describes how to calculate the checksum for

each device. Note that the checksum calculation differs

depending on the code protect setting. Since the pro-

gram memory locations read out differently, depending

on the code protect setting, the table describes how to

manipulate the actual program memory values to sim-

ulate the values that would be read from a protected

device. When calculating a checksum by reading a

device, the entire program memory can simply be read

and summed. The configuration word and ID locations

can always be read.

Note: Some older devices have an additional

value added in the checksum. This is to

maintain compatibility with older device

programmer checksums.

TABLE 5-3: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank

Value

0xC0DE at 0

and max

address

PIC17C752 MP mode

MC mode

EMC mode

PMC mode

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x1FFF] + (CONFIG & 0xC05F)

0xA05F

0xA04F

0xA01F

0x200F

0x221D

0x220D

0x21DD

0xE3D3

PIC17C756 MP mode

MC mode

EMC mode

PMC mode

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x3FFF] + (CONFIG & 0xC05F)

0x805F

0x804F

0x801F

0x000F

0x021D

0x020D

0x01DD

0xC3D3

PIC17C756A MP mode

MC mode

EMC mode

PMC mode

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x3FFF] + (CONFIG & 0xC05F)

0x805F

0x804F

0x801F

0x000F

0x021D

0x020D

0x01DD

0xC3D3

PIC17C762 MP mode

MC mode

EMC mode

PMC mode

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x1FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x1FFF] + (CONFIG & 0xC05F)

0xA05F

0xA04F

0xA01F

0x200F

0x221D

0x220D

0x21DD

0xE3D3

PIC17C766 MP mode

MC mode

EMC mode

PMC mode

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM[0x0000:0x3FFF] + (CONFIG & 0xC05F)

SUM_XNOR8[0x0000:0x3FFF] + (CONFIG & 0xC05F)

0x805F

0x804F

0x801F

0x000F

0x021D

0x020D

0x01DD

0xC3D3

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a to b inclusive]

SUM_XNOR8(a:b) = [Sum of 8-bit wide XNOR copied into upper and lower byte, of locations a to b inclusive]

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND
apPMOTQ_Jé~ÖÉ=PJVM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
5.5 Device ID Register

Program memory location FDFFh is preprogrammed

during the fabrication process with information on the

device and revision information. These bits are

accessed by a TABLR0 instruction, and are access

when the TEST pin is high. As as a result, the device

ID bits can be read when the part is code protected.

TABLE 5-4: DEVICE ID REGISTER DECODE

Resultant Device

Device
Device ID Value

DEV REV

PIC17C766 0000 0001 001 X XXXX

PIC17C762 0000 0001 101 X XXXX

PIC17C756 0000 0000 001 X XXXX

PIC17C756A 0000 0010 001 X XXXX

PIC17C752 0000 0010 101 X XXXX
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJVN

PIC17C7XX
6.0 PARALLEL MODE AC/DC CHARACTERISTICS AND TIMING
REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10×C £ TA £ +70×C, unless otherwise stated, (25×C is recommended)

Operating Voltage: 4.5V £ VDD £ 5.25V, unless otherwise stated.

Parameter

No.
Sym. Characteristic Min. Typ. Max. Units Conditions/Comments

PD1 VDDP Supply voltage during pro-

gramming

4.75 5.0 5.25 V

PD2 IDDP Supply current during pro-

gramming

— — 50 mA Freq = 10MHz, VDD = 5.5V

PD3 VDDV Supply voltage during verify VDD

min.

— VDD

max.

V Note 2

PD4 VPP Voltage on VPP/MCLR pin

during programming

12.75 — 13.25 V Note 1

PD6 IPP Programming current on

VPP/MCLR pin

— 25 50 mA

P1 FOSCP Osc/clockin frequency dur-

ing programming

4 — 10 MHz

P2 TCY Instruction cycle 1 — 0.4 ms TCY = 4/FOSCP

P3 TIRV2TSH RA0, RA1, RA2, RA3, RA4

setup before TEST¦

1 — — ms

P4 TTSH2MCH TEST¦ to MCLR¦ 1 — — ms

P5 TBCV2IRH RC7:RC0, RB7:RB0 valid to

RA1 or RA0¦:Address/Data

input setup time

0 — — ms

P6 TIRH2BCL RA1 or RA0¦ to RB7:RB0,

RC7:RC0 invalid; Address

data hold time;

10 TCY — — ms

P7 T0CKIL2RBCZ RTØ to RB7:RB0, RC7:RC0

hi-impedance

— — 8TCY

P8 T0CKIH2BCV RA1¦ to data out valid — — 10 TCY

P9 TPROG Programming pulse width 100 1000 ms

P10 TIRH2IRL RA0, RA1 high pulse width 10 TCY — — ms

P11 TIRL2IRH RA0, RA1 low pulse width 10 TCY — — ms

P12 T0CKIV2INL RA1¦ before INTØ (to go

from prog cycle to verify w/o

increment)

0 — — ms

P13 TINL2RTL RA1 valid after RA0 (to

select increment or no

increment going from pro-

gram to verify cycle

10 TCY — — ms

P14 TVPPS VPP setup time before RA0¦ 100 — — ms Note 1

P15 TVPPH VPP hold time after INTØ 0 — — ms Note 1

P16 TVDV2TSH VDD stable to TEST¦ 10 — — ms

P17 TRBV2MCH RB input (E1h) valid to VPP/

MCLR¦

0 — — ms

P18 TMCH2RBI RB input (E1h) hold after

VPP/MCLR¦

10TCY — — ns

P19 TVPL2VDL VDD power down after VPP

power down

10 — — ms

Note 1: VPP/MCLR pin must only be equal to or greater than VDD at times other than programming.

2: Program must be verified at the minimum and maximum VDD limits for the part.
apPMOTQ_Jé~ÖÉ=PJVO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
FIGURE 6-1: PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS I

T
e
s
t

M
C
L
R

R
A
1

R
A
0

R
B
<
7
:0
>

R
C
<
7
:0
>

P
4

P
5

P
1
8

IN
C

A
D
D
R

E
1
H

A
D
D
R
_
H
I

D
A
T
A
_
H
I
O
U
T

D
A
T
A
_
H
I
O
U
T

D
D
A
T
A
_
H
I
O
U
T

A
D
D
R
_
L
O

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
H
I
O
U
T

1
3
V

5
V

P
1
4

P
9

P
1
5

P
1
0

P
1
1

P
9

P
7

P
5

P
6

J
u
m
p
 A
d
d
re
s
s

In
p
u
t

P
ro
g
ra
m
m
in
g

M
o
d
e
 E
n
tr
y

L
o
a
d
 A
d
d
re
s
s
 X

V
e
ri
fy
 l
o
c
a
ti
o
n
 X

In
c
re
m
e
n
t
A
d
d
re
s
s
 t
o
 X
 +
 1

b
y
 p
u
ls
in
g
 R
A
1

V
e
ri
fy
 l
o
c
a
ti
o
n
 X
 +
 1

P
ro
g
ra
m
 l
o
c
a
ti
o
n
 X
 +
 !

D
o
 n
o
t
in
c
re
m
e
n
t
P
C

b
y
 r
a
is
in
g
 R
A
1
 b
e
fo
re

R
A
0

V
e
ri
fy
 l
o
c
a
ti
o
n
 X
 +
 1

N
o
te
:

R
A
2
 =
 0

R
A
3
 =
 0

R
A
4
 =
 1
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJVP

PIC17C7XX
FIGURE 6-2: PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS II

T
e
s
t

1
3
V

5
V

V
P
P
/M
C
L
R

R
A
1

R
A
0

R
B
<
7
:0
>

R
C
<
7
:0
>

E
1
H

A
D
D
R
_
H
I

D
A
T
A
_
H
I
O
U
T

D
A
T
A
_
H
I_
IN

D
A
T
A
_
H
I_
IN

D
A
T
A
_
H
I_
IN

D
A
T
A
_
H
I
O
U
T

A
D
D
R
_
L
O

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
_
IN

D
A
T
A
_
L
O
_
IN

D
A
T
A
_
L
O
_
IN

P
1
5

P
9

P
9

P
9

J
u
m
p
 A
d
d
re
s
s

In
p
u
t

P
ro
g
ra
m
m
in
g

m
o
d
e
 e
n
tr
y

L
o
a
d
 a
d
d
re
s
s
 X

V
e
ri
fy
 l
o
c
a
ti
o
n
 X

P
ro
g
ra
m
 l
o
c
a
ti
o
n
 X

P
ro
g
ra
m
 l
o
c
a
ti
o
n
 X

M
o
v
e
 t
o
 v
e
ri
fy
 c
y
c
le

P
re
v
e
n
t
in
c
re
m
e
n
t
o
f

P
C
 b
y
 r
a
is
in
g
 R
A
1

b
e
fo
re
 R
A
0

V
e
ri
fy
 l
o
c
a
ti
o
n
 X

N
o
te
:

R
A
2
 =
 0

R
A
3
 =
 0

R
A
4
 =
 1

P
1
4

P
1
4

apPMOTQ_Jé~ÖÉ=PJVQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
FIGURE 6-3: PARALLEL MODE PROGRAMMING AND VERIFY TIMINGS III

P
1
3

P
1
3

P
1
2

D
A
T
A
_
H
IO
U
T

D
A
T
A
_
H
I
IN

D
A
T
A
_
H
I
O
U
T

D
A
T
A
_
H
I
IN

D
A
T
A
_
H
I
O
U
T

D
A
T
A
_
H
I
IN

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
 I
N

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
 I
N

D
A
T
A
_
L
O
 O
U
T

D
A
T
A
_
L
O
 I
N

V
e
ri
fy
 l
o
c
a
ti
o
n
 X

P
ro
g
ra
m
 l
o
c
a
ti
o
n
 X

D
o
 n
o
t
in
c
re
m
e
n
t

P
C
 R
a
is
e
 R
A
1
 b
e
fo
re

R
A
0
 t
o
 d
o
 t
h
is

V
e
ri
fy
 l
o
c
a
ti
o
n
 X

P
ro
g
ra
m
 l
o
c
a
ti
o
n
 X

R
a
is
e
 R
A
1
 a
ft
e
r
R
A
0

to
 i
n
c
re
m
e
n
t
lo
c
a
ti
o
n
 X
 +
 1

V
e
ri
fy
 l
o
c
a
ti
o
n
 X
 +
 1

P
u
ls
e
 R
A
1
 t
o
 i
n
c
re
m
e
n
t

a
d
d
re
s
s
 t
o
 X
 +
 2

V
e
ri
fy
 l
o
c
a
ti
o
n
 X
 +
 2

R
A
1

R
A
0

R
B
<
7
:0
>

R
C
<
7
:0
>

IN
C
 P
C

N
o
te
:

D
e
v
ic
e
 i
n
 P
G
M
 m
o
d
e

T
e
s
t
=
 +
6

V
P
P
/M
C
L
R
 =
 V

P
P

R
A
2
 =
 0

R
A
3
 =
 0

R
A
4
 =
 1

IN
C
 P
C

IN
C
 P
C

=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJVR

PIC17C7XX
FIGURE 6-4: POWER-UP/DOWN SEQUENCE FOR PROGRAMMING

P16

P19

P3

P
1
7

P18

E1H

VDD

VPP/MCLR

Test

RA4

RA2

RA3

RA0

RB<7:0>
apPMOTQ_Jé~ÖÉ=PJVS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
7.0 ELECTRICAL SPECIFICATIONS FOR SERIAL PROGRAMMING MODE

All parameters apply across the specified operating ranges

unless otherwise noted.

Vcc = 2.5V to 5.5V

Commercial (C): Tamb = 0° to +70°C

Industrial (I): Tamb = -40°C to +85°C

Parameter

No.

Sym Characteristic Min Typ† Max Units Conditions

VIHH Programming Voltage on VPP/

MCLR pin and TEST pin.

12.75 — 13.75 V

IPP Programming current on MCLR pin — 25 50 mA

FOSC Input OSC frequency on RA1 — — 8 MHz

TCY Instruction Cycle Time — 4/FOSC —

PS1 TVH2VH Setup time between TEST = VIHH

and MCLR = VIHH

1 — — ms

PS2 TSER Serial setup time 20 — — TCY

PS3 TSCLK Serial Clock period 1 — — TCY

PS4 TSET1 Input Data Setup Time to serial

clock Ø
15 — — ns

PS5 THLD1 Input Data Hold Time from serial

clock Ø
15 — — ns

PS6 TDLY1 Delay between last clock Ø to first

clock ¦ of next command

20 — — TCY

PS7 TDLY2 Delay between last clock Ø of com-

mand byte to first clock ¦ of read of

data word

20 — — TCY

PS8 TDLY3 Delay between last clock Ø of com-

mand byte to first clock ¦ of write of

data word

30 — — TCY

PS9 TDLY4 Data input not driven to next clock

input

1 — — TCY

PS10 TDLY5 Delay between last begin program-

ming clock Ø to last clock Ø of next

command (minimum programming

time)

100 — — ms

* These parameters are characterized but not tested.

† Data in “Typ” column is at 5V, 25×C unless otherwise stated. These parameters are for design guidance only and are not

tested.
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJVT

PIC17C7XX
FIGURE 7-1: RESET ADDRESS POINTER COMMAND (PROGRAM/VERIFY)

FIGURE 7-2: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O

M M M M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpS

sfee

mpP

mpQmpR

mpN

Ekbuq=`ljj^kaF

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O

M N N M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpS

sfee

mpP

mpQmpR

mpN

Ekbuq=`ljj^kaF
apPMOTQ_Jé~ÖÉ=PJVU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC17C7XX
FIGURE 7-3: LOAD ADDRESS COMMAND

FIGURE 7-4: READ ADDRESS COMMAND

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M N M N M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpT

sfee

mpP

mpQmpR

mpN

mpS

Ekbuq=`ljj^kaF

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M M N N M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpU

sfee

mpP

mpQmpR

RA4 = Output

mpS

mpN

mpV

Ekbuq=`ljj^kaF
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apPMOTQ_Jé~ÖÉ=PJVV

PIC17C7XX
FIGURE 7-5: LOAD DATA COMMAND

FIGURE 7-6: READ DATA COMMAND

FIGURE 7-7: BEGIN PROGRAMMING COMMAND (PROGRAM)

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M N M M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpT

sfee

mpP

mpQmpR

mpN

mpS

Ekbuq=`ljj^kaF

j`io/smm

sfee

o^NqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O P NR NS N

M M N M M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpU

sfee

mpP

mpQmpR

RA4 = Output

mpS

mpN

mpV

Ekbuq=`ljj^kaF

j`io/smm

sfee

o^NLqM`hf

Test

RA5 (Clock)

RA4 (Data)

N O P Q R S T U N O

M M M N M M M M

mpO

Reset

RA4 = Input

Program/Verify Test Mode

mpNM

sfee

mpP

mpQmp

mpN

Ekbuq=`ljj^kaF

T U
apPMOTQ_Jé~ÖÉ=PJNMM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PIC18CXXX
In-Circuit Serial ProgrammingTM for PIC18CXXX OTP MCUs
This document includes the

programming specifications for the

following devices:

1.0 PROGRAMMING THE
PIC18CXXX

The PIC18CXXX can be programmed using a serial

method while in users’ system, allowing increased

design flexibility. This programming specification

applies to PIC18CXXX devices in all package types.

1.1 Hardware Requirements

The PIC18CXXX requires two programmable power

supplies, one for VDD and one for VPP. Both supplies

should have a minimum resolution of 0.25V.

1.2 Programming Mode

The Programming mode for the PIC18CXXX allows

programming of user program memory (except for the

PIC18C601/801 ROMless devices), special locations

used for ID, and the configuration words for the

PIC18CXXX.

Pin Diagrams

The pin diagrams for the PIC18CXX2 family are shown

below in Figure 1-1 through Figure 1-3. Pin diagrams for

the PIC18CXX8 family are provided in Figure 1-4

through Figure 1-7. Pin diagrams for the PIC18C601/801

family are provided in Figure 1-8 through Figure 1-11.

FIGURE 1-1: PIC18CXX2 FAMILY

PIN DIAGRAM

• PIC18C242 • PIC18C601

• PIC18C252 • PIC18C801

• PIC18C442 • PIC18C658

• PIC18C452 • PIC18C858

RB7

RB6

RB5

RB4

RB3/CCP2*
RB2/INT2

RB1/INT1

RB0/INT0

VDD

VSS

RD7/PSP7

RD6/PSP6
RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

MCLR/VPP

RA0/AN0

RA1/AN1
RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/T0CKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

VDD

VSS

OSC1/CLKI

OSC2/CLKO/RA6

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2*
RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

P
IC

1
8
C
X
X
2

* RB3 is the alternate pin for the CCP2 pin multiplexing.

DIP, Windowed CERDIP

Note: Pin compatible with 40-pin PIC16C7X devices.

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC18C242/252/442/452

PIC18C601/801/658/858

Pin Name
During Programming

Pin Name Pin Type Pin Description

MCLR/VPP VPP P Programming Power

VDD VDD P Power Supply

VSS VSS P Ground

RB6 RB6 I Serial Clock

RB7 RB7 I/O Serial Data

Legend: I = Input, O = Output, P = Power
 2003 Microchip Technology Inc. DS39028E-page 3-101

PIC18CXXX
FIGURE 1-2: PIC18C4X2 44-PIN PLCC AND 44-PIN TQFP DIAGRAMS

10
11
12
13
14
15
16
171
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

4
4

8
7

6 5 4 3 2 1

2
7

2
8

29
30
31
32
33
34
35
36
37
38
39

4
0
4
1
4
2
4
3

9

PIC18C4X2

RA4/T0CKI
RA5/AN4/SS/LVDIN

RE0/RD/AN5

OSC2/CLKO/RA6

NC

RE1/WR/AN6
RE2/CS/AN7

VDD

OSC1/CLKI

RB3/CCP2*
RB2/INT2
RB1/INT1
RB0/INT0
VDD

VSS

RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7/RX/DT

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

M
C
L
R
/V

P
P

N
C

R
B
7

R
B
6

R
B
5

R
B
4

N
C

N
C

R
C
6
/T
X
/C
K

R
C
5
/S
D
O

R
C
4
/S
D
I/S

D
A

R
D
3
/P
S
P
3

R
D
2
/P
S
P
2

R
D
1
/P
S
P
1

R
D
0
/P
S
P
0

R
C
3
/S
C
K
/S
C
L

R
C
2
/C
C
P
1

R
C
1
/T
1
O
S
I/C

C
P
2
*

10
11

2

3
4
5

6

1

1
8

1
9

2
0

2
1

2
2

1
2

1
3

1
4

1
5

3
8

8
7

4
4

4
3

4
2
4
1

4
0
3
9

1
6

1
7

29

30
31
32
33

23
24
25

26

27

28

3
6

3
4
3
5

9

PIC18C4X2

3
7

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

M
C
L
R
/V

P
P

N
C

R
B
7

R
B
6

R
B
5

R
B
4

N
C

R
C
6
/T
X
/C
K

R
C
5
/S
D
O

R
C
4
/S
D
I/
S
D
A

R
D
3
/P
S
P
3

R
D
2
/P
S
P
2

R
D
1
/P
S
P
1

R
D
0
/P
S
P
0

R
C
3
/S
C
K
/S
C
L

R
C
2
/C
C
P
1

R
C
1
/T
1
O
S
I/
C
C
P
2
*

N
C

NC

RC0/T1OSO/T1CKI
OSC2/CLKO/RA6
OSC1/CLKI
VSS

VDD

RE2/AN7/CS
RE1/AN6/WR
RE0/AN5/RD
RA5/AN4/SS/LVDIN
RA4/T0CKI

RC7/RX/DT
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7

VSS

VDD

RB0/INT0
RB1/INT1
RB2/INT2

RB3/CCP2*

PLCC

TQFP

* RB3 is the alternate pin for the CCP2 pin multiplexing.

Note: Pin compatible with 44-pin PIC16C7X devices.

VSS

RC0/T1OSO/T1CKI
DS39028E-page 3-102  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 1-3: PIC18C2X2 28-PIN DIP, SOIC, WINDOWED CERDIP DIAGRAM

P
IC

1
8
C
2
X
2

10

11

2

3

4

5

6

1

8

7

9

12

13

14 15

16

17

18

19

20

23

24

25

26

27

28

22

21

MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2/VREF-

RA3/AN3/VREF+

RA4/T0CKI

RA5/AN4/SS/LVDIN

VSS

OSC1/CLKI

OSC2/CLKO/RA6

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2*
RC2/CCP1

RC3/SCK/SCL

RB7

RB6

RB5

RB4

RB3/CCP2*
RB2/INT2

RB1/INT1

RB0/INT0

VDD

VSS

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

* RB3 is the alternate pin for the CCP2 pin multiplexing.

DIP, SOIC, Windowed CERDIP

Note: Pin compatible with 28-pin PIC16C7X devices.
 2003 Microchip Technology Inc. DS39028E-page 3-103

PIC18CXXX
FIGURE 1-4: PIC18C658 64-PIN TQFP DIAGRAM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

R
E
2
/C
S

R
E
3

R
E
4

R
E
5

R
E
6

R
E
7
/C
C
P
2

R
D
0
/P
S
P
0

V
D
D

V
S
S

R
D
1
/P
S
P
1

R
D
2
/P
S
P
2

R
D
3
/P
S
P
3

R
D
4
/P
S
P
4

R
D
5
/P
S
P
5

R
D
6
/P
S
P
6

R
D
7
/P
S
P
7

RE1/WR

RE0/RD

RG0/CANTX1

RG1/CANTX2

RG2/CANRX

RG3

MCLR/VPP

RG4

VSS

VDD

RF7

RF6/AN11

RF5/AN10/CVREF

RF4/AN9

RF3/AN8

RF2/AN7/C1OUT

RB0/INT0

RB1/INT1

RB2/INT2

RB3/INT3

RB4

RB5

RB6

VSS

OSC2/CLKO/RA6

OSC1/CLKI

VDD

RB7

RC4/SDI/SDA

RC3/SCK/SCL

RC2/CCP1

R
F
0
/A
N
5

R
F
1
/A
N
6
/C

2
O
U
T

A
V
D
D

A
V
S
S

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

V
S
S

V
D
D

R
A
4
/T
0
C
K
I

R
A
5
/S
S
/A
N
4
/L
V
D
IN

R
C
1
/T
1
O
S
I

R
C
0
/T
1
O
S
O
/T
1
3
C
K
I

R
C
7
/R
X
/D
T

R
C
6
/T
X
/C

K
RC5/SDO

PIC18C658

Note: All PIC18C658 and PIC18C858 package outlines are compatible with PIC17C7XX.
DS39028E-page 3-104  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 1-5: PIC18C658 68-PIN PLCC DIAGRAM

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

RB0/INT0

RB1/INT1

RB2/INT2

RB3/INT3

RB4

RB5

RB6

VSS

NC

OSC1/CLKI

VDD

RB7

RC4/SDI/SDA

RC3/SCK/SCL

RC2/CCP1

RE1/WR

RE0/RD

RG0/CANTX1

RG1/CANTX2

RG2/CANRX

RG3

MCLR/VPP

RG4

VSS

VDD

RF7

RF6/AN11

RF5/AN10/CVREF

RF4/AN9

RF3/AN8

RF2/AN7/C1OUT

R
E
2
/C
S

R
E
3

R
E
4

R
E
5

R
E
6

R
E
7
/C
C
P
2

R
D
0
/P
S
P
0

V
D
D

V
S
S

R
D
1
/P
S
P
1

R
D
2
/P
S
P
2

R
D
3
/P
S
P
3

R
D
4
/P
S
P
4

R
D
5
/P
S
P
5

R
D
6
/P
S
P
6

R
D
7
/P
S
P
7

R
F
1
/A
N
6
/C

2
O
U
T

R
F
0
/A
N
5

A
V
D
D

A
V
S
S

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

V
D
D

R
A
4
/T
0
C
K
I

R
A
5
/S
S
/A
N
4
/L
V
D
IN

R
C
1
/T
1
O
S
I

R
C
0
/T
1
O
S
O
/T
1
3
C
K
I

R
C
7
/R
X
/D
T

R
C
6
/T
X
/C

K

RC5/SDO

OSC2/CLKO/RA6
N
C

NC

N
C

V
S
S

PIC18C658

Note: All PIC18C658 and PIC18C858 package outlines are compatible with PIC17C7XX.
 2003 Microchip Technology Inc. DS39028E-page 3-105

PIC18CXXX
FIGURE 1-6: PIC18C858 80-PIN TQFP DIAGRAM

3

4

5

6

7

8

9

10

11

12

13

14

15

16

48

47

46

45

44

43

42

41

4039

64 63 62 61

21 22 23 24 25 26 27 28 29 30 31 32

R
E
2
/C
S

R
E
3

R
E
4

R
E
5

R
E
6

R
E
7
/C
C
P
2

R
D
0
/P
S
P
0

V
D
D

V
S
S

R
D
1
/P
S
P
1

R
D
2
/P
S
P
2

R
D
3
/P
S
P
3

R
D
4
/P
S
P
4

R
D
5
/P
S
P
5

R
D
6
/P
S
P
6

R
D
7
/P
S
P
7

RE1/WR

RE0/RD

RG0/CANTX1

RG1/CANTX2

RG2/CANRX

RG3

MCLR/VPP

RG4

VSS

VDD

RF7

RF6/AN11

RF5/AN10/CVREF

RF4/AN9

RF3/AN8

RF2/AN7/C1OUT

RB0/INT0

RB1/INT1

RB2/INT2

RB3/INT3

RB4

RB5

RB6

VSS

OSC2/CLKO/RA6

OSC1/CLKI

VDD

RB7

RC4/SDI/SDA

RC3/SCK/SCL

RC2/CCP1

R
F
0
/A
N
5

R
F
1
/A
N
6
/C

2
O
U
T

A
V
D
D

A
V
S
S

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

V
S
S

V
D
D

R
A
4
/T
0
C
K
I

R
A
5
/S
S
/A
N
4
/L
V
D
IN

R
C
1
/T
1
O
S
I

R
C
0
/T
1
O
S
O
/T
1
3
C
K
I

R
C
7
/R
X
/D
T

R
C
6
/T
X
/C

K
RC5/SDO

R
J
0

R
J
1

R
H
1

R
H
0

1

2

RH2

RH3

17

18

RH7/AN15

RH6/AN14

R
H
5
/A
N
1
3

R
H
4
/A
N
1
2

R
K
1

R
K
0

37

RK3

RK2

50

49

RJ2

RJ3

19

20

33 34 35 36 38

58

57

56

55

54

53

52

51

60

59

68 67 66 6572 71 70 6974 7378 77 76 757980

PIC18C858

Note: All PIC18C658 and PIC18C858 package outlines are compatible with PIC17C7XX.
DS39028E-page 3-106  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 1-7: PIC18C858 84-PIN PLCC DIAGRAM

1011

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 60

59

58

57

56

55

54

53525150494847464544

9 8 7 6 5 4 3 2 1

27

28

29

30

31

32

33 3435 36 37 38 39 40 41 42 43

RB0/INT0

RB1/INT1

RB2/INT2

RB3/INT3

RB4

RB5

RB6

VSS

NC

OSC1/CLKI

VDD

RB7

RC4/SDI/SDA

RC3/SCK/SCL

RC2/CCP1

RE1/WR

RE0/RD

RG0/CANTX1

RG1/CANTX2

RG2/CANRX

RG3

MCLR/VPP

RG4

VSS

VDD

RF7

RF6/AN11

RF5/AN10/CVREF

RF4/AN9

RF3/AN8

RF2/AN7/C1OUT

R
E
2
/C
S

R
E
3

R
E
4

R
E
5

R
E
6

R
E
7
/C
C
P
2

R
D
0
/P
S
P
0

V
D
D

V
S
S

R
D
1
/P
S
P
1

R
D
2
/P
S
P
2

R
D
3
/P
S
P
3

R
D
4
/P
S
P
4

R
D
5
/P
S
P
5

R
D
6
/P
S
P
6

R
D
7
/P
S
P
7

R
F
1
/A
N
6
/C

2
O
U
T

R
F
0
/A
N
5

A
V
D
D

A
V
S
S

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

V
S
S

V
D
D

R
A
4
/T
0
C
K
I

R
A
5
/S
S
/A
N
4
/L
V
D
IN

R
C
1
/T
1
O
S
I

R
C
0
/T
1
O
S
O
/T
1
3
C
K
I

R
C
7
/R

X
/D

T

R
C
6
/T
X
/C

K

RC5/SDO

RJ2

RJ3

R
J
0

R
J
1

R
K
0

R
K
1

RK3

RK2

R
H
1

R
H
0

RH2

RH3

R
H
5
/A
N
1
3

R
H
4
/A
N
1
2

RH7/AN15

RH6/AN14

67

66

65

64

63

62

61

68

74

73

72

71

70

7679 78 778083 82 8184 75

69

OSC2/CLKO/RA6

N
C

NC

N
C

PIC18C858

Note: All PIC18C658 and PIC18C858 package outlines are compatible with PIC17C7XX.
 2003 Microchip Technology Inc. DS39028E-page 3-107

PIC18CXXX
FIGURE 1-8: PIC18C601 64-PIN TQFP DIAGRAM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

NS

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

R
E
2
/A
D
1
0

R
E
3
/A
D
1
1

R
E
4
/A
D
1
2

R
E
5
/A
D
1
3

R
E
6
/A
D
1
4

R
E
7
/A
D
1
5

R
D
0
/A
D
0

V
D
D

V
S
S

R
D
1
/A
D
1

R
D
2
/A
D
2

R
D
3
/A
D
3

R
D
4
/A
D
4

R
D
5
/A
D
5

R
D
6
/A
D
6

R
D
7
/A
D
7

RE1/AD9

RE0/AD8

RG0/ALE

RG1/OE

RG2/WRL

RG3/WRH

MCLR/VPP

RG4/BA0

VSS

VDD

RF7/UB

RF6/LB

RF5/CS1

RF4/A16

RF3/CSIO

RF2/AN7

RB0/INT0

RB1/INT1

RB2/INT2

RB3/CCP2

RB4

RB5

RB6

VSS

OSC2/CLKO

OSC1/CLKI

VDD

RB7

RC4/SDI/SDA

RC3/SCK/SCL

RC2/CCP1

o
c
M
L^
k
R

o
c
N
L^
k
S

^
s
a
a

^
s
p
p

o
^
P
L^
k
P
Ls

o
b
c
H

o
^
O
L^
k
O
Ls

o
b
c
J

o
^
N
L^
k
N

o
^
M
L^
k
M

s
p
p

s
a
a

o
^
Q
Lq
M
`
h
f

o
^
R
Lp
p
L^
k
Q
Li
s
a
fk

o
`
N
Lq
N
l
p
f

o
`
M
Lq
N
l
p
l
Lq
N
P
`
h
f

o
`
T
Lo
u
La
q

o
`
S
Lq
u
L`

h
RC5/SDO

PIC18C601
DS39028E-page 3-108  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 1-9: PIC18C601 68-PIN PLCC DIAGRAM

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

60

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45

44

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

o_MLfkqM

o_NLfkqN

o_OLfkqO

RB3/CCP2

o_Q

o_R

o_S

spp

NC

lp`NL`ihf

saa

o_T

o`QLpafLpa^

o`PLp`hLp`i

o`OL``mN

RE1/AD9

RE0/AD8

RG0/ALE

RG1/OE

RG2/WRL

RG3/WRH

j`ioLsmm

RG4/BA0

VSS

VDD

RF7/UB

RF6/LB

RF5/CS1

RF4/A16

RF3/CSIO

ocOL^kT

R
E
2
/A
D
1
0

R
E
3
/A
D
1
1

R
E
4
/A
D
1
2

R
E
5
/A
D
1
3

R
E
6
/A
D
1
4

R
E
7
/A
D
1
5

R
D
0
/A
D
0

s
a
a

s
p
p

R
D
1
/A
D
1

R
D
2
/A
D
2

R
D
3
/A
D
3

R
D
4
/A
D
4

R
D
5
/A
D
5

R
D
6
/A
D
6

R
D
7
/A
D
7

o
c
N
L^
k
S

o
c
M
L^
k
R

^
s
a
a

^
s
p
p

o
^
P
L^
k
P
Ls

o
b
c
H

o
^
O
L^
k
O
Ls

o
b
c
J

o
^
N
L^
k
N

o
^
M
L^
k
M

s
a
a

o
^
Q
Lq
M
`
h
f

o
^
R
Lp
p
L^
k
Q
Li
s
a
fk

o
`
N
Lq
N
l
p
f

o
`
M
Lq
N
l
p
l
Lq
N
P
`
h
f

o
`
T
Lo
u
La
q

o
`
S
Lq
u
L`

h

o`RLpal

lp`OL`ihl

N
C

NC

N
C

s
p
p

PIC18C601
 2003 Microchip Technology Inc. DS39028E-page 3-109

PIC18CXXX
FIGURE 1-10: PIC18C801 80-PIN TQFP DIAGRAM

3

4

5

6

7

8

9

10

11

12

13

14

15

16

48

47

46

45

44

43

42

41

4039

64 63 62 61

21 22 23 24 25 26 27 28 29 30 31 32

R
E
2
/A
D
1
0

R
E
3
/A
D
1
1

R
E
4
/A
D
1
2

R
E
5
/A
D
1
3

R
E
6
/A
D
1
4

R
E
7
/A
D
1
5

R
D
0
/A
D
0

V
D
D

V
S
S

R
D
1
/A
D
1

R
D
2
/A
D
2

R
D
3
/A
D
3

R
D
4
/A
D
4

R
D
5
/A
D
5

R
D
6
/A
D
6

R
D
7
/A
D
7

RE1/AD9

RE0/AD8

RG0/ALE

RG1/OE

RG2/WRL

RG3/WRH

MCLR/VPP

RG4/BA0

VSS

VDD

RF7/UB

RF6/LB

RF5/CS1

RF4/CS2

RF3/CSIO

RF2/AN7

RB0/INT0

RB1/INT1

RB2/INT2

RB3/CCP2

RB4

RB5

RB6

VSS

OSC2/CLKO

OSC1/CLKI

VDD

RB7

RC4/SDI/SDA

RC3/SCK/SCL

RC2/CCP1

R
F
0
/A
N
5

R
F
1
/A
N
6

A
V
D
D

A
V
S
S

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

V
S
S

V
D
D

R
A
4
/T
0
C
K
I

R
A
5
/S
S
/A
N
4
/L
V
D
IN

R
C
1
/T
1
O
S
I

R
C
0
/T
1
O
S
O
/T
1
3
C
K
I

R
C
7
/R
X
/D
T

R
C
6
/T
X
/C

K
RC5/SDO

R
J
0
/D

7

R
J
1
/D

6

R
H
1
/A
1
7

R
H
0
/A
1
6

1

2

RH2/A18

RH3/A19

17

18

RH4/AN8

RH5/AN9

R
H
6
/A
N
1
0

R
H
7
/A
N
1
1

R
J
1
/D
1

R
J
0
/D
0

37

RJ3/D3

RJ2/D2

50

49

RJ5/D5

RJ4/D4

19

20

33 34 35 36 38

58

57

56

55

54

53

52

51

60

59

68 67 66 6572 71 70 6974 7378 77 76 757980

PIC18C801
DS39028E-page 3-110  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 1-11: PIC18C801 84-PIN PLCC DIAGRAM

1011

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 60

59

58

57

56

55

54

53525150494847464544

9 8 7 6 5 4 3 2 1

27

28

29

30

31

32

33 3435 36 37 38 39 40 41 42 43

RB0/INT0

RB1/INT1

RB2/INT2

RB3/CCP2

RB4

RB5

RB6

VSS

NC

lp`NL`ihf

VDD

RB7

o`QLpafLpa^

o`PLp`hLp`i

RC2/CCP1

RE1/AD9

RE0/AD8

RG0/ALE

RG1/OE

RG2/WRL

RG3/WRH

MCLR/VPP

RG4/BA0

VSS

VDD

RF7/UB

RF6/LB

RF5/CS1

RF4/CS2

RF3/CSIO

RF2/AN7

R
E
2
/A
D
1
0

R
E
3
/A
D
1
1

R
E
4
/A
D
1
2

R
E
5
/A
D
1
3

R
E
6
/A
D
1
4

R
E
7
/A
D
1
5

R
D
0
/A
D
0

V
D
D

V
S
S

R
D
1
/A
D
1

R
D
2
/A
D
2

R
D
3
/A
D
3

R
D
4
/A
D
4

R
D
5
/A
D
5

R
D
6
/A
D
6

R
D
7
/A
D
7

R
F
1
/A
N
6

R
F
0
/A
N
5

A
V
D
D

A
V
S
S

R
A
3
/A
N
3
/V

R
E
F
+

R
A
2
/A
N
2
/V

R
E
F
-

R
A
1
/A
N
1

R
A
0
/A
N
0

V
S
S

V
D
D

R
A
4
/T
0
C
K
I

R
A
5
/S
S
/A
N
4
/L
V
D
IN

R
C
1
/T
1
O
S
I

R
C
0
/T
1
O
S
O
/T
1
3
C
K
I

R
C
7
/R

X
/D

T

R
C
6
/T
X
/C

K

RC5/SDO

RJ5/D5

RJ4/D4

R
J
7
/D

7

R
J
6
/D

6

R
J
0
/D
0

R
J
1
/D
1

RJ3/D3

RJ2/D2

R
H
1
/A
1
7

R
H
0
/A
1
6

RH2/A18

RH3/A19
R
H
6
/A
N
1
0

R
H
7
/A
N
1
1

RH4/AN8

RH5/AN9

67

66

65

64

63

62

61

68

74

73

72

71

70

7679 78778083 82 8184 75

69

lp`OL`ihl
N
C

NC

N
C

PIC18C801
 2003 Microchip Technology Inc. DS39028E-page 3-111

PIC18CXXX
2.0 IN-CIRCUIT SERIAL
PROGRAMMINGTM (ICSPTM)
MODE

2.1 Introduction

Serial Programming mode is entered by asserting

MCLR/VPP = VIHH and RB6, RB7 = 0V.

Instructions are fed into the CPU serially on RB7, and

are shifted on the rising edge, and latched on the falling

edge of the serial clock presented on RB6. RB7 serves

as data out, as well. Programming and verification are

performed by executing TBLRD and TBLWT instruc-
tions. The address pointer to the program memory is

simply the table pointer. The address pointer can be

incremented and decremented by executing table

reads and writes with auto-decrement and auto-incre-

ment.

2.2 ICSP Operation

In ICSP mode, instruction execution takes place

through a serial interface using RB6 and RB7. RB7 is

used to shift in instructions and shift out data from the

TABLAT register. RB6 is used as the serial shift clock

and the CPU execution clock. Instructions and data are

shifted LSb first.

In this mode, all instructions are shifted serially, loaded

into the instruction register, and executed. No program

fetching occurs from internal or external program mem-

ory. 8-bit data bytes are read from the TABLAT register

via the same serial interface.

2.2.1 4-BIT SERIAL INSTRUCTIONS

A set of 4-bit instructions are provided for ICSP mode,

so the most common instructions used for ICSP can be

fetched quickly, and reduce the amount of time

required to program a device. The 4-bit opcode is

shifted in while the previously fetched instruction exe-

cutes. The 4-bit instruction contains the lower 4 bits of

an instruction opcode. The upper 12 bits default to all

0’s. Instructions with all 0’s in the upper byte of the

instruction word are by default, considered special

instructions. The serial instructions are decoded as

shown in Table 2-1.

TABLE 2-1: SPECIAL INSTRUCTIONS FOR SERIAL INSTRUCTION EXECUTION AND ICSP

Mnemonic,

Operands
Description Cycles 4-bit Opcode

Status

Affected

NOP No Operation (shift in16-bit instruction) 1 0000 None

TBLRD * Table Read (no change to TBLPTR) 2 1000 None

TBLRD *+ Table Read (post-increment TBLPTR) 2 1001 None

TBLRD *- Table Read (post-decrement TBLPTR) 2 1010 None

TBLRD +* Table Read (pre-increment TBLPTR) 2 1011 None

TBLWT * Table Write (no change to TBLPTR) 2 1100 None

TBLWT *+ Table Write (post-increment TBLPTR) 2 1101 None

TBLWT *- Table Write (post-decrement TBLPTR) 2 1110 None

TBLWT +* Table Write (pre-increment TBLPTR) 2 1111 None

Legend: Refer to the PIC18CXXX Data Sheet (DS39026 or DS30475) for opcode field descriptions.

Note: All special instructions not included in this table are decoded as NOPs.
DS39028E-page 3-112  2003 Microchip Technology Inc.

PIC18CXXX
2.2.2 INITIAL SERIAL INSTRUCTION

OPERATION

Upon ICSP mode entry, the CPU is idle. The execution

of the CPU is governed by a state machine. While the

first instruction is being clocked in, a forced NOP
(FNOP) is executed.

Following the FNOP instruction execution and shifting in
of the next instruction, the serial state machine will do

one of three things, depending upon the 4-bit

instruction fetched:

1. If the instruction fetched was a NOP, the state
machine will suspend the CPU, awaiting a 16-bit

wide instruction to be shifted in.

2. If the instruction is a TBLWT as shown in

Figure 2-1, the state machine suspends the

CPU from execution, while sixteen bits of data

are shifted in as data for the TBLWT instruction.

3. If the instruction is a TBLRD, then execution of
the TBLRD instruction begins immediately for
eight clock cycles, followed by eight clock cycles

where the contents of the TABLAT register is

shifted out onto RB7.

Once sixteen clock cycles have elapsed, the next 4-bit

instruction is fetched, while the current instruction is

executed. Each instruction type is described in later

sections.

FIGURE 2-1: SERIAL INSTRUCTION TIMING AFTER RESET

Q1Q Cycles Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 = Input or Output depending upon instruction

ICSP Mode

16-bit Instruction Load or Execute Instruction,Execute FNOP,
Fetch 4-bit Instruction Fetch Next 4-bit

Q4Q4

MCLR/VPP

VIHH

P1

RESET

16-bit Data Fetch or
Perform TBLRD followed by shift data out Instruction

1 2 3 4

P5

5 6 7 8 1 2 3 4

P5

9 10 11 13 15 161412

1 0 1 1

1 2 3 4

n n n n

P3

n n n n n n nn n n n n n n n n

P4

RB6 (Clock)

RB7 (Data)

P2 P2a
 2003 Microchip Technology Inc. DS39028E-page 3-113

PIC18CXXX
2.2.3 NOP SERIAL INSTRUCTION
EXECUTION

The NOP serial instruction is used to allow execution of
all other instructions not included in Table 2-1. When

the NOP instruction is fetched, the serial execution state
machine suspends the CPU for 16 clock cycles. During

these 16 clock cycles, all 16 bits of an instruction are

fed into the CPU and the NOP instruction is discarded.
Once all 16 bits have been shifted in, the state machine

will allow the instruction to be executed for the next four

clock cycles.

2.2.4 ONE-CYCLE 16-BIT INSTRUCTIONS

If the instruction fetched is a one-cycle instruction, then

the instruction operation will be completed in the four

clock cycles following the instruction fetched. During

instruction execution, the next 4-bit serial instruction is

fetched (see Figure 2-2).

FIGURE 2-2: SERIAL INSTRUCTION TIMING FOR 1-CYCLE, 16-BIT INSTRUCTIONS

Note: 16-bit TBLWT and TBLRD instructions are
not permitted. They will cause timing prob-

lems with the serial state machine. If the

user wishes to perform a TBLWT or TBLRD
instruction, it must be performed as a 4-bit

instruction.

MCLR/VPP = VIHH

P5

Q1Q Cycles

2 3 1 2 3 15 16 1 2 3 4

RB6 (Clock)

P5

Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 (Data)

RB7 = Input

16-bit Instruction Fetch Execute 16-bit Instruction,Execute PC-2,

1 4

0 0 0 0 n n n n

Fetch NOP to enable
16-bit Instruction fetch

Fetch Next Serial

4 5 6 7 8 9 10 11 12 13 14

Q4

4-bit Instruction

n n n n n n nn n n n n n n n n

ICSP Mode
DS39028E-page 3-114  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-3: 16-BIT, 1-CYCLE SERIAL INSTRUCTION FLOW AFTER RESET

Start

Enable CPU,

Num_Clk = 1,

Qstate = Q<Num_Clk>

Qstate = Q<4>?

Hold CPU in Q4,

shift in 16-bit instruction,
Num_Clk = 1

Clock
transition

RB6?

Yes

Yes

No

No

execute FNOP,

VPP = VIHH

MCLR = VSS,
RB6, RB7 = 0

Enable CPU,

Num_Clk = 1,

execute 16-bit instruction,

Qstate = Q<4>?

Clock
transition

RB6?

Yes

Yes

No

No

Qstate = Q<Num_Clk>

End

Shift(R) RB7
into ROMLAT<3>,

Num_Clk = Num_Clk + 1

4-bit instruction = NOP,

Num_Clk = 16?

Clock
transition

RB6?

Yes

Yes

No

No

and shift in 1st
4-bit instruction,

Shift(R) RB7
into ROMLAT<15>,

Num_Clk = Num_Clk + 1

and shift in next
4-bit instruction,

Shift(R) RB7
into ROMLAT<3>,

Num_Clk = Num_Clk + 1
 2003 Microchip Technology Inc. DS39028E-page 3-115

PIC18CXXX
FIGURE 2-4: 16-BIT, 1-CYCLE SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1

Clock
transition

RB6?

Yes

No

Execute (PC - 2),

Num_Clk = 1

Execute 16-bit instruction,

Clock
transition

RB6?

Yes

No

End

Shift(R) RB7

Num_Clk = Num_Clk + 1

Num_Clk = 16?

Clock
transition

RB6?

Yes

Yes

No

No

and shift in next
4-bit instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1

and shift in next
4-bit instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1

4-bit instruction = NOP,
shift in 16-bit instruction,

Num_Clk = 1
DS39028E-page 3-116  2003 Microchip Technology Inc.

PIC18CXXX
2.3 Serial Instruction Execution For

Two-Cycle, One-Word Instructions

When a NOP instruction is fetched, the serial execution
state machine suspends the CPU for 16 clock cycles.

During these 16 clock cycles, all 16 bits of an instruc-

tion are fed in and the NOP instruction is discarded.

If the instruction fetched is a two-cycle, one-word

instruction, the instruction operation will require a sec-

ond “dummy fetch” to be performed before the instruc-

tion execution can be completed. The first cycle of the

instruction will be executed in the four clock cycles fol-

lowing the instruction fetched. During the first cycle of

instruction execution, the next 4-bit serial instruction is

fetched. To perform the second half of the two cycle

instruction, this 4-bit instruction must be a NOP, so the
state machine will remain idle for the second half of the

instruction. Following the fetch of the second NOP, the
state machine will shift 16 bits of data that will be dis-

carded. After the 16 bits of data are shifted in, the state

machine will release the CPU, and allow it to perform

the second half of the two-cycle instruction. During the

second half of the two-cycle instruction execution, the

next 4-bit instruction is loaded (see Figure 2-5).

FIGURE 2-5: 16-BIT, 2-CYCLE, 1-WORD INSTRUCTION SEQUENCE

Q Cycles

1 2 3 4 1 2 15 16

P5

1 2 3 4

Q1 Q2 Q3 Q4

MCLR/VPP

RB7 = Input

ICSP Mode

Execute PC-2 Fetch 16-bit Instruction

RB6 (Clock)

Q1 Q2 Q3 Q4

Fetch 2nd 16-bit

Execute 1st Cycle

1 2 15 16

P5

1 2 3 4

Q1 Q2 Q3 Q4

Fetch 4-bit NOP
Execute 2nd Cycle,Fetch 4-bit NOP,

Fetch Next 4-bit InstructionOperand Word (discarded)
of 16-bit Instruction

RB7 (Data) n n n0 0 0 0

P5 P5

n n n n 0 0 0 0 n n n n n
 2003 Microchip Technology Inc. DS39028E-page 3-117

PIC18CXXX
2.4 Serial Instruction Execution For

Two-Word, Two-Cycle Instructions

After a NOP instruction is fetched, the serial execution
state machine suspends the CPU in the Q4 state for 16

clock cycles. During these 16 clock cycles, all 16 bits of

an instruction are fed in and the NOP instruction is
discarded.

If the 16-bit instruction fetched is a two-cycle, two-word

instruction, the instruction operation will require a sec-

ond operand fetch to be performed before the instruc-

tion execution can be completed. The first cycle of the

instruction will be executed in the four clock cycles fol-

lowing the 16-bit instruction fetch. During the first cycle

of instruction execution, the next 4-bit serial instruction

is fetched. To perform the second half of the two-cycle

instruction, this 4-bit instruction must also be a NOP, so
the state machine will remain idle for the second half of

the instruction. Following the fetch of the second NOP,
the state machine will shift 16 bits of data that will be

used as an operand for the two-cycle instruction. After

the 16 bits of data are shifted in, the state machine will

release the CPU, and allow it to execute the second

half of the two-cycle instruction. During the second half

of the two-cycle instruction execution, the next 4-bit

instruction is loaded (see Figure 2-6).

FIGURE 2-6: 16-BIT, 2-CYCLE, 2-WORD INSTRUCTION SEQUENCE

MCLR/VPP = VIHH

Q1Q Cycles

RB6 (Clock)

Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

RB7 = Input

ICSP Mode

Execute 1st Cycle,Execute PC-2, Execute 2nd Cycle,Fetch 2nd wordFetch 1st word
Fetch next 4-bit Fetch 4-bit NOP Fetch 4-bit NOP
Instruction

RB7 (Data)

1 2 3 4 1 2 15 16

P5

1 2 3 4 1 2 15 16 1 2 3 4

n n n0 0 0 0

P5

n n n n 0 0 0 0 n n n n n

P5P5
DS39028E-page 3-118  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-7: 16-BIT, 2-CYCLE, 2-WORD SERIAL INSTRUCTION FLOW AFTER RESET

Start

MCLR = VSS,
RB6, RB7 = 0

Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 1

Num_Clk = 16?

Clock
transition

RB6?

Clock
transition

RB6?

Yes

No

Yes

Yes

No

No

Execute FNOP and shift in

shift in 16-bit instruction,

Num_Clk = 1

Num_Clk = 16?

Clock
transition

RB6?

Yes

Yes

No

No

Enable CPU,

Num_Clk = 1

execute 1st cycle of 16-bit

Clock
transition

RB6?

Yes

No

Execute 2nd cycle of 16-bit

End

VPP = VIHH

shift in 2nd 16-bit operand,

Clock
transition

RB6?

Yes

No

Shift(R) RB7,

Num_Clk = Num_Clk + 1

instruction, and shift in next

4-bit instruction,

4-bit instruction = NOP,

1st 4-bit instruction,

Shift(R) RB7,

Num_Clk = Num_Clk + 1

Shift(R) RB7,

Num_Clk = Num_Clk + 1

instruction, and shift in
next 4-bit instruction

Num_Clk = 1

Shift(R) RB7,

Num_Clk = Num_Clk + 1

Shift(R) RB7,

Num_Clk = Num_Clk + 1
 2003 Microchip Technology Inc. DS39028E-page 3-119

PIC18CXXX
FIGURE 2-8: 16-BIT, 2-CYCLE, 2-WORD SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1

Num_Clk = 16?

Clock
transition

RB6?

Clock
transition

RB6?

Yes

No

Yes

Yes

No

No

Execute (PC-2) and shift in

shift in 16-bit instruction,
Num_Clk = 1

Num_Clk = 16?

Clock
transition

RB6?

Yes

Yes

No

No

Num_Clk = 1

Execute 1st cycle of 16-bit

Clock
transition

RB6?

Yes

No

Execute 2nd cycle of 16-bit

End

Clock
transition

RB6?

Yes

No

Shift(R) RB7,
Num_Clk = Num_Clk + 1

instruction, and shift in next
4-bit instruction,

4-bit instruction = NOP,

4-bit instruction,

Shift(R) RB7,

Num_Clk = Num_Clk + 1

Shift(R) RB7,

Num_Clk = Num_Clk + 1

instruction, and shift in
next 4-bit instruction

Num_Clk = 1

Shift(R) RB7,

Num_Clk = Num_Clk + 1

Shift(R) RB7,
Num_Clk = Num_Clk + 1

4-bit instruction = NOP,

Num_Clk = 1
shift in 2nd 16-bit operand,
DS39028E-page 3-120  2003 Microchip Technology Inc.

PIC18CXXX
2.5 TBLWT Instruction

The TBLWT instruction is a special two-cycle instruction.

All forms of TBLWT instructions (post/pre-increment,
post-decrement, etc.) are encoded as 4-bit special

instructions. This is useful as TBLWT instructions are
used repeatedly in ICSP mode. A 4-bit instruction will

minimize the total number of clock cycles required to

perform programming algorithms.

The TBLWT instruction sequence operates as follows:

1. The 4-bit TBLWT instruction is read in by the
state machine on RB7 during the four clock

cycle execution of the instruction fetched previ-

ous to the TBLWT (which is a FNOP if the TBLWT
is executed following a RESET).

2. Once the state machine recognizes that the

instruction fetched is a TBLWT, the state

machine proceeds to fetch in the 16 bits of data

that will be written into the program memory

location pointed to by the TBLPTR.

3. The state machine releases the CPU to execute

the first cycle of the TBLWT instruction, while the
first four bits of the 16-bit data word are shifted in.

After the first cycle of TBLWT instruction has com-
pleted, the state machine shifts in the remaining

12 of the 16 bits of data. The data word will not be

used until the second cycle of the instruction.

4. After all 16 bits of data are shifted in and the first

cycle of the TBLWT is performed, the CPU will
execute the second cycle of the TBLWT opera-
tion, programming the current memory location

with the 16-bit value. The next instruction follow-

ing the TBLWT instruction, NOP, is shifted in dur-
ing the execution of the second cycle (see

Figure 2-9).

The TBLWT instruction is used in ICSP mode to pro-
gram the EPROM array. When writing a 16-bit value to

the EPROM, ID locations, or configuration locations,

the device, RB6 must be held high for the appropriate

programming time during the TBLWT instruction, as
specified by parameter P9.

When RB6 is asserted low, the device will cease pro-

gramming the specified location.

After RB6 is asserted low, RB6 is held low for the time

specified by parameter P10, to allow high voltage dis-

charge of the program memory array.

FIGURE 2-9: TBLWT INSTRUCTION SEQUENCE

MCLR/VPP = VIHH

Q Cycles

1 2 3 4

RB6 (Clock)

P5

Q1 Q2 Q3 Q4

RB7 = Input

ICSP Mode

Execute PC-2

Load TBLWT Data

Fetch TBLWT
Execute 1st
Cycle TBLWT

Q1 Q2 Q3 Q4

RB7 (Data)
0 0 1 1

1 2 15 16 1 2 3 4

P5

n

3 4 65

P9

P10

Programming Time

n n n n n n n 0 0

1 2

n0 0

fetch next
4-bit command

n

3

n

 2003 Microchip Technology Inc. DS39028E-page 3-121

PIC18CXXX
FIGURE 2-10: TBLWT SERIAL INSTRUCTION FLOW AFTER RESET

Start

Num_Clk = 1

4-bit instruction = TBLWT,

begin shifting in TBLWT data,
Num_Clk = 1

Clock
transition

RB6?

Yes

No

Execute FNOP,

VPP = VIHH

MCLR = VSS,
RB6, RB7 = 0

Num_Clk = 1

Num_Clk = 12?

Clock
transition

RB6?

Yes

Yes

No

No

End

Shift(R) RB7

Num_Clk = Num_Clk + 1

execute 1st cycle of TBLWT,

Num_Clk = 4?

Clock
transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLWT instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1

Shift in last 12 bits
of TBLWT data,

Shift(R) RB7

Num_Clk = Num_Clk + 1

Num_Clk = 1

Execute 2nd cycle of TBLWT

Clock
transition

RB6?

Yes

No

instruction and shift in next

4-bit instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1
DS39028E-page 3-122  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-11: TBLWT SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1

4-bit instruction = TBLWT,

begin shifting in TBLWT data,
Num_Clk = 1

Clock
transition

RB6?

Yes

No

Execute (PC-2),

Num_Clk = 1

Num_Clk = 12?

Clock
transition

RB6?

Yes

Yes

No

No

End

Shift(R) RB7

Num_Clk = Num_Clk + 1

execute 1st cycle of TBLWT,

Num_Clk = 4?

Clock
transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLWT instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1

Shift in last 12 bits
of TBLWT data,

Shift(R) RB7

Num_Clk = Num_Clk + 1

Num_Clk = 1

Execute 2nd cycle of TBLWT

Clock
transition

RB6?

Yes

No

instruction and shift in next
4-bit instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1
 2003 Microchip Technology Inc. DS39028E-page 3-123

PIC18CXXX
2.6 TBLRD Instruction

The TBLRD instruction is another special two-cycle
instruction.

All forms of TBLRD instructions (post/pre-increment,
post-decrement, etc.) are encoded as 4-bit special

instructions. This is useful as TBLRD instructions are
used repeatedly in ICSP mode. A 4-bit instruction will

minimize the total number of clock cycles required to

perform programming algorithms.

The TBLRD instruction sequence operates as follows:

1. The 4-bit TBLRD instruction is read in by the
state machine on RB7 during the four clock

cycle execution of the instruction fetched previ-

ous to the TBLRD (which is an FNOP if the TBLRD
is executed following a RESET).

2. Once the state machine recognizes that the

instruction fetched is a TBLRD, the state
machine releases the CPU and allows execu-

tion of the first and second cycles of the TBLRD
instruction for eight clock cycles. When the

TBLRD is performed, the contents of the pro-
gram memory byte pointed to by the TBLPTR is

loaded into the TABLAT register.

3. After eight clock cycles have transitioned on

RB6, and the TBLRD instruction has completed,
the state machine will suspend the CPU for eight

clock cycles. During these eight clock cycles,

the state machine configures RB7 as an output,

and will shift out the contents of the TABLAT reg-

ister onto RB7, LSb first.

4. When the state machine has shifted out all eight

bits of data, the state machine suspends the

CPU to allow an instruction pre-fetch. Four

clock cycles are required on RB6 to shift in the

next 4-bit instruction.

FIGURE 2-12: TBLRD INSTRUCTION SEQUENCE

MCLR/VPP = VIHH

Q Cycles

1 2 3 4

RB6 (Clock)

P5

Q1 Q2 Q3 Q4

RB7 (Data)

RB7 = Input

ICSP Mode

Execute PC-2 Execute Cycle 2Execute Cycle 1 Shift data out from TABLAT

RB7 = Output

Fetch TBLRD TBLRD TBLRD
No execution takes place,
fetch next 4-bit instruction

1 0 0 1

RB7 = Input

P6

5 6 7 8 1 2 3 4

P5

9 10 11 13 15 161412

LSb MSb1 2 3 4 5 6

1 2 3 4

n n n n

P14

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
DS39028E-page 3-124  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-13: TBLRD SERIAL INSTRUCTION FLOW AFTER RESET

Start

Num_Clk = 1

Enable CPU,

cycle TBLRD instruction

Clock
transition

RB6?

Yes

No

Execute FNOP,

VPP = VIHH

MCLR = VSS,
RB6, RB7 = 0

Shift out 8 bits

End

Shift(R) RB7

Num_Clk = Num_Clk + 1

execute 1st and 2nd

Num_Clk = 8?

Clock
transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLRD instruction,

TBLRD instruction execution

Num_Clk = Num_Clk + 1

of data to RB7

Num_Clk = 8?

Clock
transition

RB6?

Yes

Yes

No

No

Shift(R) TABLAT<0>
out onto RB7

Num_Clk = Num_Clk + 1

4-bit instruction

Shift in next

Num_Clk = 4?

Clock
transition

RB6?

Yes

Yes

No

No

Shift(R) RB7
Num_Clk = Num_Clk + 1

takes place here
 2003 Microchip Technology Inc. DS39028E-page 3-125

PIC18CXXX
FIGURE 2-14: TBLRD SERIAL INSTRUCTION FLOW

Start

Num_Clk = 1

cycle TBLRD instruction

Clock
transition

RB6?

Yes

No

Execute (PC-2),

Shift out 8 bits

End

Shift(R) RB7
Num_Clk = Num_Clk + 1

Execute 1st and 2nd

Num_Clk = 8?

Clock
transition

RB6?

Yes

Yes

No

No

and shift in 4-bit
TBLRD instruction,

of data to RB7

Num_Clk = 8?

Clock
transition

RB6?

Yes

Yes

No

No

4-bit instruction

Shift in next

Num_Clk = 4?

Clock
transition

RB6?

Yes

Yes

No

No

Shift(R) RB7

Num_Clk = Num_Clk + 1

Shift(R) TABLAT<0>
out onto RB7

Num_Clk = Num_Clk + 1

TBLRD instruction execution

Num_Clk = Num_Clk + 1
takes place here
DS39028E-page 3-126  2003 Microchip Technology Inc.

PIC18CXXX
2.6.1 SOFTWARE COMMANDS

ICSP commands of the PICmicro® MCU are supported

in the PIC18CXXX family by simply combining CPU

instructions. Once in the ICSP mode, instructions are

loaded into a shift register, and the device waits for a

command to be received. The ICSP commands for the

PIC18CXXX family are now “pseudo-commands” and

are shown in Table 2-2. The following sections describe

how to implement the pseudo-commands using CPU

instructions.

2.6.2 RESET ADDRESS

A reset of the program memory pointer is a write to the

upper, high, and low bytes of the TBLPTR. To reset the

program memory pointer, the following instruction

sequence is used.

NOP ;(4-BIT INSTRUCTION)
MOVLW 00h
NOP ;(4-BIT INSTRUCTION)
MOVWF TBLPTRU
NOP ;(4-BIT INSTRUCTION)
MOVWF TBLPTRH
NOP ;(4-BIT INSTRUCTION)
MOVWF TBLPTRL

TABLE 2-2: ICSP PSEUDO

COMMAND MAPPING

ICSP™

Command
Golden Gate Instructions

Load

Configuration

MOVLW #Address1

MOVWF TBLPTRL

MOVLW #Address2

MOVWF TBLPTRH

MOVLW #Address3

MOVWF TBLPTRU

Load Data

Not needed. Data encoded

in 4-bit TBLWT
instruction sequence.

Read Data TBLRD instruction

Increment

Address

Not needed. Use TBLWT with
increment/decrement

(TBLWT *+/*-).

Load Address

MOVLW #Addr_low

MOVWF TBLPTRL

MOVLW #Addr_high

MOVWF TBLPTRH

MOVLW #Addr_upper

MOVWF TBLPTRU

RESET Address

MOVLW #Data

MOVWF TBLPTRH

MOVWF TBLPTRL

MOVWF TBLPTRU

Begin

Programming

TBLWT

End

Programming

Not needed. Programming will

cease at the end of TBLWT
execution.
 2003 Microchip Technology Inc. DS39028E-page 3-127

PIC18CXXX
FIGURE 2-15: RESET ADDRESS SERIAL INSTRUCTION SEQUENCE

Start

Num_Clk = 4?

Yes

No

Execute (PC - 2),

A

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

Num_Clk = 16?

Yes

No

shift in next 4-bit instruction, shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 1

Num_Clk = 4?

Yes

No

Num_Clk = 16?

Yes

No

Num_Clk = 1

Execute MOVLW instruction,
shift in 4-bit NOP instruction,

Num_Clk = 1

Execute MOVWF instruction,
shift in 4-bit NOP instruction,

On rising edge RB6,

Shift(R) RB7
Num_Clk = Num_Clk + 1

On rising edge RB6,

Shift(R) RB7
Num_Clk = Num_Clk + 1

On rising edge RB6,

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 16?

Yes

No

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

Num_Clk = 1

Execute MOVWF instruction,
shift in next 4-bit instruction,

Num_Clk = 4?

Yes

No

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

(NOP)

(NOP)

(NOP)

(NOP)

(NOP)

MOVLW 00h

MOVWF
TBLPTRU

MOVWF
TBLPTRH

(NOP)

4-bit instruction = NOP,

Num_Clk = 1

Shift in 16-bit MOVLW instruction,
DS39028E-page 3-128  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-16: RESET ADDRESS SERIAL INSTRUCTION SEQUENCE (CONTINUED)

2.6.3 LOAD ADDRESS

This is used to load the address pointer to the Program

Memory with a specific 22-bit value, and is useful when

a specific range of locations are to be accessed. To

load the address into the table pointer, the following

commands must be used:

NOP ; 4-bit instruction
MOVLW Low_Address
NOP ; 4-bit instruction
MOVWF TBLPTRL
NOP ; 4-bit instruction
MOVLW High_Address
NOP ; 4-bit instruction
MOVWF TBLPTRH
NOP ; 4-bit instruction
MOVLW Upper_Address
NOP ; 4-bit instruction
MOVWF TBLPTRU

Num_Clk = 4?

Yes

No

On rising edge RB6,

Num_Clk = 16?

Yes

No

Shift(R) RB7

into Shift Reg<3>,

Num_Clk = 1

Execute MOVWF instruction,
shift in next 4-bit instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1

On rising edge RB6,

(NOP)

MOVWF

4-bit instruction = NOP,

Num_Clk = 1

Shift in 16-bit MOVWF instruction,

A

Num_Clk = Num_Clk + 1

into Shift Reg<15>,

TBLPTRL

End
 2003 Microchip Technology Inc. DS39028E-page 3-129

PIC18CXXX
FIGURE 2-17: LOAD ADDRESS SERIAL INSTRUCTION SEQUENCE

Start

Num_Clk = 4?

shift in 16-bit MOVLW instruction,
Num_Clk = 1

Yes

No

Execute (PC - 2),

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

4-bit instruction = NOP,

Num_Clk = 16?

Yes

No

shift in next 4-bit instruction, shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 1

Num_Clk = 4?

Yes

No

Num_Clk = 16?

Yes

No

Num_Clk = 1

Execute MOVLW instruction,
shift in 4-bit NOP instruction,

Num_Clk = 1

Execute MOVWF instruction,
shift in 4-bit NOP instruction,

On rising edge RB6,

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

shift in 16-bit MOVWF instruction,
Num_Clk = 1

4-bit instruction = NOP,

Num_Clk = 16?

Yes

No

Shift(R) RB7
into Shift Reg<15>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

Num_Clk = 1

Execute MOVWF instruction,
shift in next 4-bit instruction,

Yes

No

Shift(R) RB7
into Shift Reg<3>,

Num_Clk = Num_Clk + 1

On rising edge RB6,

(NOP)

(NOP)

MOVLW
Low_Address

MOVWF
TBLPTRL

MOVLW
High_Address

(NOP)

Num_Clk = 4?

A

DS39028E-page 3-130  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-18: LOAD ADDRESS SERIAL INSTRUCTION SEQUENCE (CONTINUED)

Num_Clk = 4?

Yes

No

On rising edge RB6,

Num_Clk = 16?

Yes

No

Shift(R) RB7

into Shift Reg<3>,

Num_Clk = 1

Execute MOVWF instruction,
shift in next 4-bit instruction,

Shift(R) RB7

Num_Clk = Num_Clk + 1

On rising edge RB6,

(NOP)

MOVLW

4-bit instruction = NOP,

Num_Clk = 1

Shift in 16-bit MOVWF instruction,

A

Num_Clk = Num_Clk + 1

into Shift Reg<15>,

Upper_Address

End
 2003 Microchip Technology Inc. DS39028E-page 3-131

PIC18CXXX
2.6.4 ICSP BEGIN PROGRAMMING

Programming is performed by executing a TBLWT
instruction. In ICSP mode, the TBLWT instruction
sequence will include 16 bits of data shifted into a data

buffer, and then written to the word location addressed

by the TBLPTR. Although the TBLPTR addresses the

program memory on a byte wide boundary, all 16 bits of

data shifted in during the TBLWT sequence are written
at once. The 16 bits are shifted into the TABLAT and

buffer registers. The TBLPTR points to the word that

will be programmed; it can point to either the high or the

low byte (see Figure 2-19).

The sequence for programming a location could occur

as follows:

1. Set up the TLBPTR with the first address to be

programmed (even or odd byte).

2. Shift in a 4-bit TBLWT instruction.

3. 16 bits of data are shifted in for programming

both high and low byte of the first programmed

location.

4. Execute TBLWT instruction to program location.

5. Verify high byte (odd address) by executing

TLBRD*- (post-decrement). (TBLPTR points at
odd address.)

6. Verify low byte (even address) by executing

TLBRD*+ (post-increment). (TBLPTR points at
odd address again.)

7. If location doesn’t verify, go back to step 4.

8. If location does verify, begin 3x over-

programming (see Section 2.6.7).

The TBLWT instruction offers flexibility with multiple
addressing modes: pre-increment, post-increment,

post-decrement, and no change of the TBLPTR. These

modes eliminate the need for the increment address

command sequence.

FIGURE 2-19: DATA BUFFERING SCHEME FOR ICSP

Buffer Register

Program Memory
Bank 0
(Even Address)

Program Memory
Bank 1

(Odd Address)

TBLWT
Odd or Even

TBLWT
Odd or Even

TBLRD

TABLAT Register

AddressAddress

EvenOddTBLRD

RB7

Data shifted into
TABLAT and
Buffer Registers
DS39028E-page 3-132  2003 Microchip Technology Inc.

PIC18CXXX
2.6.5 PROGRAMMING INSTRUCTION

SEQUENCE

The instructions needed to execute a programming

sequence are shown in the following example. Many of

the instruction sequences are also shown in previous

sections.

NOP ; 4-bit instruction
; Set up low byte
; of program address

MOVLW Low_Byte_Address ; = 00
NOP ; 4-bit instruction
MOVWF TBLPTRL
NOP ; 4-bit instruction

; Set up high byte
; of program
; address

MOVLW High_Byte_Address ; = 00
NOP ; 4-bit instruction
MOVWF TBLPTRH
NOP ; 4-bit instruction

; Set up upper byte
; of program
; address

MOVLW Upper_Byte_Address; = 00
NOP ; 4-bit instruction
MOVWF TBLPTRU ; Program data byte

; included in TBLWT
; instruction
; sequence

TBLWT+* ; TBLPTR = 000000h

A write of a program memory location with an odd or an

even address causes a long write cycle in ICSP mode.

The 16-bit data is encoded in the TBLWT sequence and
is loaded into the temporary buffer register for word

wide writes.

2.6.6 VERIFY SEQUENCE

The table pointer = 000001h in the last example. A
TBLRD will then read the odd address byte of the cur-
rent program word address location first. The verify

sequence will be as follows:

; Read/verify high byte first
TBLRD*-

; TBLPTR = 0000 post-dec
; Read/verify low byte

TBLRD*

The first TBLRD decrements the table pointer to point to
the even address byte of the current program word.

After the first and second cycle of the TBLRD are per-
formed, all eight bits of data are shifted out on RB7. The

fetch of the second TBLRD occurs on the next four
clock cycles. The second TBLRD does not modify the
table pointer address. This allows another program-

ming cycle (TBLWT+*) to take place if the verify doesn’t
match the program data, without having to update the

table pointer.

If the contents of the verify do not match the intended

program data word, then the TBLWT instruction must be
repeated with the correct contents of the current pro-

gram word. Therefore, only one instruction needs to be

performed to repeat the programming cycle:

TBLWT+*

2.6.7 3X OVER-PROGRAMMING

Once a location has been both programmed and veri-

fied over the range of voltages, 3x over-programming

should be applied. In other words, apply three times the

number of programming pulses required to program a

location in memory to ensure solid programming

margin.

This means that every location will be programmed a

minimum of four times (1 + 3x over-programming).
 2003 Microchip Technology Inc. DS39028E-page 3-133

PIC18CXXX
FIGURE 2-20: DETAILED PROGRAMMING FLOW CHART – PROGRAM MEMORY

Start

Execute MOVLW
for four clock cycles

VPP = VIHH,
RB6, RB7 = 0

Execute FNOP
for four clock cycles,

Shift in last 12 bits of data

for 12 clock cycles

Hold CPU,
shift in TBLRD*

for four clock cycles

Execute 1st cycle
TBLWT+*, and shift in

A

Execute 2nd cycle
TBLWT+* for four clock cycles

and shift in TBLRD*-
for four clock cycles

N = 1

Execute 1st and 2nd cycle
TBLRD*- for eight clock cycles

Shift data out

for eight clock cycles

Verify?

No

Yes

N = N + 1

N > 25?
Yes

No

Report
Programming

Failure

shift in 4-bit NOP

shift in 16-bit MOVLW Low_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

shift in 16-bit MOVLW High_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for four clock cycles
and shift in 4-bit NOP

Execute MOVWF
for four clock cycles

shift in 16-bit MOVWF TBLPTRL
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

4-bit instruction = NOP,

first four bits of data

for four clock cycles

Execute 1st and 2nd cycle
TBLRD* for eight clock cycles

Shift data out

for eight clock cycles

B

shift in 16-bit MOVLW Upper_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for four clock cycles
and shift in 4-bit NOP

Execute MOVWF
for four clock cycles
and shift in 4-bit NOP

shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute current instruction
for four clock cycles, and

shift in 4-bit TBLWT+*

Hold RB6
clock high (P9)

Clock low
for discharge (P10)
DS39028E-page 3-134  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-21: DETAILED PROGRAMMING FLOW CHART – PROGRAM MEMORY (CONTINUED)

A

Execute current instruction,
shift in TBLWT*+

for four clock cycles

N = 1?

Yes

No

N = 3 * N

All locations

No

Yes

programmed?

B

Report

@ VDDMIN

Verify
Error

Report

@ VDDMAX

Verify
Error

No

No

Yes

Yes

End

Verify all locations
@ VDDMIN

Data correct?

Verify all locations
@ VDDMAX

Data correct?

N = N - 1

Execute 1st cycle
TBLWT*+ or TBLWT*,

and shift in first four bits of data

for four clock cycles

Shift in last 12 bits of data
for 12 clock cycles

Execute 2nd cycle
TBLWT* for four clock cycles

and shift in TBLWT*
for four clock cycles

Execute 2nd cycle
TBLWT* for four clock cycles

and shift in TBLWT*+
for four clock cycles

Shift in last 12 bits of data
for 12 clock cycles

Execute current instruction

for four clock cycles, and

shift in 4-bit TBLWT+*

Hold RB6 high (P9)

Hold RB6 high (P9)

Clock low
for discharge (P10)

Clock low
for discharge (P10)
 2003 Microchip Technology Inc. DS39028E-page 3-135

PIC18CXXX
2.6.8 LOAD CONFIGURATION

The Configuration registers are located in test memory,

and are only addressable when the high address bit of

the TBLPTR (bit 21) is set. Test program memory con-

tains test memory, configuration registers, calibration

registers, and ID locations. The desired address must

be loaded into all three bytes of the table pointer to pro-

gram specific ID locations, or the configuration bits. To

program the configuration registers, the following

sequence must be followed:

NOP ; 4-bit instruction
; shift in 16-bit
; MOVLW instruction

MOVLW 03h
NOP ; 4-bit instruction

; shift in 16-bit
; MOVWF instruction
; Enable Test memory

MOVWF TBLPTRU
NOP ; 4-bit instruction

; shift in 16-bit
; MOVLW instruction

MOVLW Low_Config_Address
NOP ; 4-bit instruction

; shift in 16-bit
; MOVWF instruction

MOVWF TBLPTRL
NOP ; 4-bit instruction

; shift in 16-bit
; MOVLW instruction

MOVLW High_Config_Address
NOP ; 4-bit instruction

; shift in 16-bit
; MOVWF instruction

MOVWF TBLPTRH
NOP ; 4-bit instruction

; shift in 16-bit
; MOVLW instruction

TBLWT*+
; 16-bits of data are
; shifted in for write
; of config1L and
; config1H TBLWT is a
; 4-bit special
; instruction.
; Wait P9 for
; programming

2.6.9 END PROGRAMMING

When programming occurs, 16 bits of data are pro-

grammed into memory. The 16 bits of data are shifted

in during the TBLWT sequence. After the programming
command (TBLWT) has been executed, the user must
wait P9 until programming is complete, before another

command can be executed by the CPU. There is no

command to end programming.

RB6 must remain high for as long as programming is

desired. When RB6 is lowered, programming will

cease.

After the falling edge occurs on RB6, RB6 must be held

low for a period of time (Parameter 10), so a high volt-

age discharge can be performed. This ensures the pro-

gram array isn’t stressed at high voltage during

execution of the next instruction. The high voltage dis-

charge will occur while RB6 is low, following the

programming time.
DS39028E-page 3-136  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-22: DETAILED PROGRAMMING FLOW CHART – CONFIG WORD

START

VPP = VIHH

4.75 V < VDD < 5.25 V

MCLR = VSS

N = 99

N = N - 1

Execute FNOP
for four clock cycles,

shift in 4-bit NOP

shift in 16-bit MOVLW 00
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for four clock cycles
and shift in 4-bit NOP

shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVWF
for four clock cycles
and shift in 4-bit NOP

shift in 16-bit MOVLW 00
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for four clock cycles

and shift in 4-bit NOP

shift in 16-bit MOVWF TBPLTRL
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute last fetched instruction
for four clock cycles

and shift in 4-bit TBLWT+*

TBPLTR = 0x300000h

Shift in last 12 bits of data
for 12 clock cycles

Execute 1st cycle

TBLWT, and shift in first four bits

Execute 2nd cycle
TBLWT for four clock cycles

and shift in TBLWT*
for four clock cycles

of configuration registers

for four clock cycles

CONFIG1L and CONFIG1H

N = 1?

Execute 2nd cycle
TBLWT* for four clock cycles

and shift in TBLWT*-
for four clock cycles

shift in 16-bit MOVLW 30
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for four clock cycles
and shift in 4-bit NOP

shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVWF
for four clock cycles
and shift in 4-bit NOP

A

B

Yes

No

Wait P9 + P10 to
ensure programming

Clock low
for discharge (P10)

RB6 high (P9)
 2003 Microchip Technology Inc. DS39028E-page 3-137

PIC18CXXX
FIGURE 2-23: DETAILED PROGRAMMING FLOW CHART – CONFIG WORD

Shift in TBLRD*+
for four clock cycles

Execute 1st and 2nd cycle
TBLRD*+ for eight clock cycles

Shift data out
for eight clock cycles

Execute 1st and 2nd cycle
TBLRD*+ for eight clock cycles

Shift data out
for eight clock cycles

Verify?

Yes

Report

@ VDDMIN

Verify
Error

Report

@ VDDMAX

Verify
Error

Yes

Yes

Verify all ID_Locations
@ VDDMIN

Verify all locations
@ VDDMAX

All
locations

Report
Verify
Error

No

Data correct? No

Data correct?

programmed?
Execute 2nd cycle TBLWT*-

for four clock cycles
and shift in TBLRD*+
for four clock cycles

Shift in last 12 bits of data
for 12 clock cycles

Execute 1st cycle TBLWT*-,
and shift in first four bits of

configuration registers
for four clock cycles

B

A

DONE

No

No

Yes
DS39028E-page 3-138  2003 Microchip Technology Inc.

PIC18CXXX
FIGURE 2-24: DETAILED PROGRAMMING FLOW CHART – ID LOCATION

Start

Execute MOVLW
for four clock cycles

VPP = VIHH,
RB6, RB7 = 0

Execute FNOP
for four clock cycles,

Shift in last 12 bits of data
for 12 clock cycles

Shift in TBLRD*
for four clock cycles

Execute 1st cycle
TBLWT+*, and shift in

A

Execute 2nd cycle
TBLWT+* for four clock cycles

and shift in TBLRD*-
for four clock cycles

N = 1

Execute 1st and 2nd cycle
TBLRD*- for eight clock cycles

Shift data out
for eight clock cycles

Verify?

No

Yes

N = N + 1

N > 25?
Yes

No
Report

Programming
Failure

shift in 4-bit NOP

shift in 16-bit MOVLW Low_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

shift in 16-bit MOVLW High_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for four clock cycles
and shift in 4-bit NOP

Execute MOVWF
for four clock cycles

shift in 16-bit MOVWF TBLPTRL
instruction for 16 clock cycles

4-bit instruction = NOP,

and shift in 4-bit NOP

shift in 16-bit MOVWF TBLPTRH
instruction for 16 clock cycles

4-bit instruction = NOP,

first four bits of data

for four clock cycles

Execute 1st and 2nd cycle
TBLRD* for eight clock cycles

Shift data out
for eight clock cycles

B

shift in 16-bit MOVLW Upper_Addr
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute MOVLW
for four clock cycles
and shift in 4-bit NOP

Execute MOVWF
for four clock cycles
and shift in 4-bit NOP

shift in 16-bit MOVWF TBLPTRU
instruction for 16 clock cycles

4-bit instruction = NOP,

Execute current instruction
for four clock cycles, and

shift in 4-bit TBLWT+*
 2003 Microchip Technology Inc. DS39028E-page 3-139

PIC18CXXX
FIGURE 2-25: DETAILED PROGRAMMING FLOW CHART – ID LOCATION (CONTINUED)

A

Execute current instruction,
shift in TBLWT*+

for four clock cycles

N = 1?

Yes

No

N = 3 * N

All locations

No

Yes

programmed?

B

Report

@ VDDMIN

Verify
Error

Report

@ VDDMAX

Verify
Error

No

No

Yes

Yes

End

Verify all locations
@ VDDMIN

Data correct?

Verify all locations
@ VDDMAX

Data correct?

N = N - 1

Execute 1st cycle
TBLWT*+ or TBLWT*, and shift in

first four bits of data

for four clock cycles

Shift in last 12 bits of data
for 12 clock cycles

Execute 2nd cycle
TBLWT* for four clock cycles

and shift in TBLWT*
for four clock cycles

Execute 2nd cycle
TBLWT* for four clock cycles

and shift in TBLWT*+
for four clock cycles

Shift in last 12 bits of data
for 12 clock cycles

Execute 2nd cycle TBLWT*+
for four clock cycles, and

shift in 4-bit TBLWT+*

Hold RB6 high (P9)

Clock low
for discharge (P10)

Hold RB6 high (P9)

Clock low
for discharge (P10)
DS39028E-page 3-140  2003 Microchip Technology Inc.

PIC18CXXX
3.0 CONFIGURATION WORD

The configuration bits can be programmed (read as '0'),

or left unprogrammed (read as '1'), to select various

device configurations. These bits are mapped starting

at program memory location 300000h.

The user will note that address 300000h is beyond the

user program memory space. In fact, it belongs to the

configuration memory space (300000h – 3FFFFFh).

3.1 ID Locations

A user may store identification information (ID) in eight

ID locations mapped in [0x200000:0x200007]. It is

recommended that the user use only the four Least

Significant bits of each ID location.

The ID locations do not read out in a scrambled fashion

after code protection is enabled. For all devices, it is

recommended to write ID locations as ‘1111 bbbb’
where ‘bbbb’ is the ID information.

TABLE 3-2: 18CXX8 CONFIGURATION BITS AND DEVICE IDS

TABLE 3-3: 18C601/801 CONFIGURATION BITS AND DEVICE IDS

Note: The PIC18C601/801 devices do not have

user ID locations.

TABLE 3-1: 18CXX2 CONFIGURATION BITS AND DEVICE IDS

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Default/

Unprogrammed

Value

300000h CONFIG1L CP CP CP CP CP CP CP CP 1111 1111

300001h CONFIG1H r r OSCSEN — — FOSC2 FOSC1 FOSC0 111- -111

300002h CONFIG2L — — — — BORV1 BORV0 BOREN PWRTEN ---- 1111

300003h CONFIG2H — — — — WDTPS2 WDTPS1 WDTPS0 WDTEN ---- 1111

300005h CONFIG3H — — — — — — — CCP2MX ---- ---1

300006h CONFIG4L — — — — — — r STVREN ---- --11

3FFFFEh DEVID1 DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 0000 0000

3FFFFFh DEVID2 DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 0000 0010

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Grayed cells are unimplemented, read as 0.

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Default/

Unprogrammed

Value

300000h CONFIG1L CP CP CP CP CP CP CP CP 1111 1111

300001h CONFIG1H r r OSCSEN — — FOSC2 FOSC1 FOSC0 111- -111

300002h CONFIG2L — — — — BORV1 BORV0 BOREN PWRTEN ---- 1111

300003h CONFIG2H — — — — WDTPS2 WDTPS1 WDTPS0 WDTEN ---- 1111

300006h CONFIG4L — — — — — — r STVREN ---- --11

3FFFFEh DEVID1 DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 0000 0000

3FFFFFh DEVID2 DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 0000 0010

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Grayed cells are unimplemented, read as 0.

Filename Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Default/

Unprogrammed

Value

300001h CONFIG1H — — — — — — FOSC1 FOSC0 ---- --10

300002h CONFIG2L — BW — — — — — PWRTEN -1-- ---1

300003h CONFIG2H — — — — WDTPS2 WDTPS1 WDTPS0 WDTEN ---- 1111

300006h CONFIG4L r — — — — — — STVREN 1--- ---1

3FFFFEh DEVID1 DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0 0000 0000

3FFFFFh DEVID2 DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3 0000 0010

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Shaded cells are unimplemented, read as ‘0’.
 2003 Microchip Technology Inc. DS39028E-page 3-141

PIC18CXXX
TABLE 3-4: PIC18CXXX FAMILY CONFIGURATION BITS

Bit Name
Bit

Type
File Name/Devices Description

CP R/P – 1 CONFIG1L/

18CXX2 and 18CXX8

Code Protection bits

1 = Program memory code protection off

0 = All of program memory code protected

OSCSEN R/P – 1 CONFIG1H/

18CXX2 and 18CXX8

Oscillator System Clock Switch Enable bit

1 = Oscillator system clock switch option is disabled

(main oscillator is source)

0 = Oscillator system clock switch option is enabled

(oscillator switching is enabled)

FOSC2:

FOSC0

R/P – 1 CONFIG1H/

18CXXX

Oscillator Selection bits

111 = RC oscillator w/OSC2 configured as RA6

(reserved on PIC18C601/801)

110 = HS oscillator with PLL enabled/Clock frequency =

(4 X FOSC) (reserved on PIC18C601/801)

101 = EC oscillator w/OSC2 configured as RA6

(reserved on PIC18C601/801)

100 = EC oscillator w/OSC2 configured as divide by

4 clock output (reserved on PIC18C601/801)

011 = RC oscillator

010 = HS oscillator

001 = XT oscillator

000 = LP oscillator

BORV1:

BORV0

R/P – 1 CONFIG2L/

18CXX2 and 18CXX8

Brown-out Reset Voltage bits

11 = VBOR set to 2.5V

10 = VBOR set to 2.7V

01 = VBOR set to 4.2V

00 = VBOR set to 4.5V

BOREN R/P – 1 CONFIG2L/

18CXX2 and 18CXX8

Brown-out Reset Enable bit

1 = Brown-out Reset enabled

0 = Brown-out Reset disabled

PWRTEN R/P – 1 CONFIG2L/

18CXXX

Power-up Timer Enable bit

1 = PWRT disabled

0 = PWRT enabled

Enabling Brown-out Reset automatically enables the

Power-up Timer (PWRT), regardless of the value of bit

PWRTEN. Ensure Power-up Timer is enabled when

Brown-out Reset is enabled.

WDTPS2:

WDTPS0

R/P – 1 CONFIG2H/

18CXXX

Watchdog Timer Postscale Select bits

111 = 1:128
110 = 1:64
101 = 1:32
100 = 1:16
011 = 1:8
010 = 1:4
001 = 1:2
000 = 1:1

Legend: R = readable, P = programmable, U = unimplemented, read as '0',

- n = value when device is unprogrammed, u = unchanged.
DS39028E-page 3-142  2003 Microchip Technology Inc.

PIC18CXXX
WDTEN R/P – 1 CONFIG2H/

18CXXX

Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled (control is placed on SWDTEN bit)

CCP2MX R/P – 1 CONFIG3H/

18CXX2

CCP2 Mux bit

1 = CCP2 input/output is multiplexed with RC1
0 = CCP2 input/output is multiplexed with RB3

STVREN R/P – 1 CONFIG4L/

18CXXX

Stack Overflow/Underflow Reset Enable bit

1 = Stack Overflow/Underflow will cause RESET
0 = Stack Overflow/Underflow will not cause RESET

BW R/P – 1 CONFIG2L/

18C601/801

External Bus Data Width bit

1 = 16-bit External Bus mode
0 = 8-bit External Bus mode

DEV10:DEV3 R DEVID2/

18CXXX

Device ID bits

These bits are used with the DEV2:DEV0 bits in the

DEVID1 register to identify part number.

DEV2:DEV0 R DEVID1/

18CXXX

Device ID bits

These bits are used with the DEV10:DEV3 bits in the

DEVID2 register to identify part number.

REV4:REV0 R DEVID1/

18CXXX

These bits are used to indicate the revision of the device.

TABLE 3-4: PIC18CXXX FAMILY CONFIGURATION BITS (CONTINUED)

Bit Name
Bit

Type
File Name/Devices Description

Legend: R = readable, P = programmable, U = unimplemented, read as '0',

- n = value when device is unprogrammed, u = unchanged.
 2003 Microchip Technology Inc. DS39028E-page 3-143

PIC18CXXX
3.2 Embedding Configuration Word Information in the HEX File

3.3 Checksum Computation

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The Least Significant 16 bits of this sum are the

checksum.

Table 3-5 describes how to calculate the checksum for

each device. Note that the checksum calculation differs

depending on the code protect setting. Since the pro-

gram memory locations read out differently, depending

on the code protect setting, the table describes how to

manipulate the actual program memory values to sim-

ulate the values that would be read from a protected

device. When calculating a checksum by reading a

device, the entire program memory can simply be read

and summed. The configuration word and ID locations

can always be read.

Note that some older devices have an additional value

added in the checksum. This is to maintain compatibil-

ity with older device programmer checksums.

.

To allow portability of code, a PIC18CXXX programmer is required to read the configuration word locations from the

HEX file when loading the HEX file. If configuration word information was not present in the HEX file, then a simple

warning message may be issued. Similarly, while saving a HEX file, all configuration word information must be

included. An option to not include the configuration word information may be provided. When embedding configuration

word information in the HEX file, it should be to address FE00h.

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Note: The checksum computations are shown

only for devices with on-chip EPROM (i.e.,

PIC18CXX2 and PIC18CXX8 devices).

Because PIC18C601/801 devices do not

have on-chip EPROM, no formulas are

shown for them. The decision to implement

a checksum for these devices, as well as

the details of the checksum scheme, are

left to the discretion of the user.
DS39028E-page 3-144  2003 Microchip Technology Inc.

PIC18CXXX
TABLE 3-5: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum

Blank

Value

0xAA at 0

and Max

Address

PIC18C242

Disabled

SUM[0x0000:0x3FFF] + CONFIG1L & 0xFF + CONFIG1H & 0x27 +

CONFIG2L & 0x0F + CONFIG2H & 0x0F + CONFIG3H & 0x01 +

CONFIG4L & 0x01

0xC146 0xC09C

Enabled

CONFIG1L & 0xFF + CONFIG1H & 0x27 + CONFIG2L & 0x0F +

CONFIG2H & 0x0F + CONFIG3H & 0x01 + CONFIG4L & 0x01 +

SUM_ID

0x005E 0x0068

PIC18C252

Disabled

SUM[0x0000:0x7FFF] + CONFIG1L & 0xFF + CONFIG1H & 0x27 +

CONFIG2L & 0x0F + CONFIG2H & 0x0F + CONFIG3H & 0x01 +

CONFIG4L & 0x01

0x8146 0x809C

Enabled

CONFIG1L & 0xFF + CONFIG1H & 0x27 + CONFIG2L & 0x0F +

CONFIG2H & 0x0F + CONFIG3H & 0x01 + CONFIG4L & 0x01 +

SUM_ID

0x005A 0x0064

PIC18C442

Disabled

SUM[0x0000:0x3FFF] + CONFIG1L & 0xFF + CONFIG1H & 0x27 +

CONFIG2L & 0x0F + CONFIG2H & 0x0F + CONFIG3H & 0x01+

CONFIG4L & 0x01

0xC146 0xC09C

Enabled

CONFIG1L & 0xFF + CONFIG1H & 0x27 + CONFIG2L & 0x0F +

CONFIG2H & 0x0F + CONFIG3H & 0x01 + CONFIG4L & 0x01 +

SUM_ID

0x005E 0x0068

PIC18C452

Disabled

SUM[0x0000:0x7FFF] + CONFIG1L & 0xFF + CONFIG1H & 0x27 +

CONFIG2L & 0x0F + CONFIG2H & 0x0F + CONFIG3H & 0x01 +

CONFIG4L & 0x01

0x8146 0x809C

Enabled

CONFIG1L & 0xFF + CONFIG1H & 0x27 + CONFIG2L & 0xF +

CONFIG2H & 0x0F + CONFIG3H & 0x01 + CONFIG4L & 0x01 +

SUM_ID

0x005A 0x0064

PIC18C658

Disabled
SUM[0x0000: 0x7FFF] + CONFIG1L & 0xFF + CONFIG1H & 0x27

+ CONFIG2L & 0x0F + CONFIG2H & 0x0F + CONFIG4L & 0x01

0x8145 0x809B

Enabled
CONFIG1L & 0xFF + CONFIG1H & 0x27 + CONFIG2L & 0x0F +

CONFIG2H & 0x0F + CONFIG4L & 0x01 + SUM_ID

0x0058 0x0062

PIC18C858

Disabled
SUM[0x0000: 0x7FFF] + CONFIG1L & 0xFF + CONFIG1H & 0x27

+ CONFIG2L & 0x0F + CONFIG2H & 0x0F + CONFIG4L & 0x01

0x8145 0x809B

Enabled
CONFIG1L & 0xFF + CONFIG1H & 0x27 + CONFIG2L & 0x0F +

CONFIG2H & 0x0F + CONFIG4L & 0x01 + SUM_ID

0x0058 0x0062

Legend: Item Description

CFGW = Configuration Word

SUM[a:b] = Sum of locations a to b inclusive

SUM_ID = Byte-wise sum of lower four bits of all customer ID locations

+ = Addition

& = Bitwise AND
 2003 Microchip Technology Inc. DS39028E-page 3-145

PIC18CXXX
4.0 AC/DC CHARACTERISTICS
TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: -40°C ≤ TA ≤ +40°C, unless otherwise stated (25°C is recommended)

Operating Voltage: 4.75V ≤ VDD ≤ 5.25V, unless otherwise stated

Param

No.
Sym Characteristic Min Typ† Max Units Conditions

VIHH Programming Voltage on VPP/MCLR pin 12.75 — 13.25 V —

IPP Programming current on MCLR

pin

18CXX2/XX8 — 25 50 mA —

18C601/801 — .5 1 mA —

P1 TSER Serial setup time 20 — — ns —

P2 TSCLK Serial clock period 100 — — ns —

P3 TSET1 Input Data Setup Time to serial clock ↓ 15 — — ns —

P4 THLD1 Input Data Hold Time from serial clock ↓ 15 — — ns —

P5 TDLY1 Delay between last clock ↓ to first clock ↑ of
next command

20 — — ns —

P6 TDLY2 Delay between last clock ↓ of command byte to
first clock ↑ of read of data word

20 — — ns —

P8 TDLY4 Data input not driven to next clock input 1 — — ns —

P9 TDLY5 RB6 high time (minimum

programming time)

18CXX2/XX8 100 — — µs —

18C601/801 1 — — ms —

P10 TDLY6 RB6 low time after programming

(high voltage discharge time)

18CXX2/XX8 100 — — ns —

18C601/801 5 — — µs —

P14 TVALID Data out valid from SCLK ↑ 10 — — ns —

† Data in “Typ” column is at 5V, 25°C, unless otherwise stated.
DS39028E-page 3-146  2003 Microchip Technology Inc.

PIC16F8X
EEPROM Memory Programming Specification
This document includes the

programming specifications for the

following devices:

• PIC16F83

• PIC16CR83

• PIC16F84

• PIC16CR84

• PIC16F84A

1.0 PROGRAMMING THE PIC16F8X

The PIC16F8X devices are programmed using a serial

method. The Serial mode will allow these devices to be

programmed while in the user’s system. This allows for

increased design flexibility. This programming specifi-

cation applies to only the above devices in all

packages.

1.1 Hardware Requirements

The PIC16F8X devices require one programmable

power supply for VDD (4.5V to 5.5V) and a VPP of 12V

to 14V. Both supplies should have a minimum resolu-

tion of 0.25V.

1.2 Programming Mode

The Programming mode for the PIC16F8X devices

allows programming of user program memory, data

memory, special locations used for ID, and the config-

uration word. On PIC16CR8X devices, only data

EEPROM and CDP can be programmed.

Pin Diagram

RA1
RA0
OSC1/CLKIN
OSC2/CLKOUT

VDD

RB7
RB6
RB5

RB4

RA2
RA3

RA4/T0CKI
MCLR

VSS

RB0/INT
RB1
RB2

RB3

•1
2
3
4

5
6
7
8

9

18
17
16
15

14
13
12
11

10

P
IC

1
6
F
8
X

PDIP, SOIC

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F8X

Pin Name
During Programming

Function Pin Type Pin Description

RB6 CLOCK I Clock Input

RB7 DATA I/O Data Input/Output

MCLR VTEST MODE P(1) Program Mode Select

VDD VDD P Power Supply

VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

Note 1: In the PIC16F8X, the programming high voltage is internally generated. To activate the Programming

mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, this

means that MCLR does not draw any significant current.
 2003 Microchip Technology Inc. DS30262E-page 3-147

PIC16F8X
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0000h to 1FFFh

(8 Kbytes), of which 1 Kbyte (0000h - 03FFh) is physi-

cally implemented. In actual implementation, the

on-chip user program memory is accessed by the lower

10 bits of the PC, with the upper 3 bits of the PC

ignored. Therefore, if the PC is greater than 03FFh, it

will wrap around and address a location within the

physically implemented memory (see Figure 2-1).

In Programming mode, the program memory space

extends from 0000h to 3FFFh, with the first half

(0000h-1FFFh) being user program memory and the

second half (2000h-3FFFh) being configuration mem-

ory. The PC will increment from 0000h to 1FFFh and

wrap to 0000h, or 2000h to 3FFFh and wrap around to

2000h (not to 0000h). Once in configuration memory,

the highest bit of the PC stays a ‘1’, thus always point-
ing to the configuration memory. The only way to point

to user program memory is to reset the part and

re-enter Program/Verify mode, as described in

Section 2.3.

In the configuration memory space, 2000h-200Fh are

physically implemented. However, only locations

2000h through 2007h are available. Other locations are

reserved. Locations beyond 2000Fh will physically

access user memory (see Figure 2-1).

FIGURE 2-1: PROGRAM MEMORY MAPPING

0h

3FFh
400h

1FFFh
2000h

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Reserved

Configuration Word

2000

2001

2002

2003

2004

2005

2006

2007

2008h

3FFFh

Not Implemented

Not Implemented

Implemented

Implemented1FFh

Not Implemented

Not Implemented

Implemented

Implemented

0.5K Word 1K Word

200Fh

Reserved Reserved
DS30262E-page 3-148  2003 Microchip Technology Inc.

PIC16F8X
2.2 ID Locations

A user may store identification information (ID) in four

ID locations, mapped in addresses 2000h through

2003h. It is recommended that the user use only the

four Least Significant bits of each ID location. The ID

locations read out in an unscrambled fashion after code

protection is enabled. It is recommended that ID loca-

tion is written as “11 1111 1000 bbbb”, where
“bbbb” is ID information.

2.3 Program/Verify Mode

The Program/Verify mode is entered by holding pins

RB6 and RB7 low, while raising MCLR pin from VIL to

VIHH (high voltage). Once in this mode, the user pro-

gram memory and the configuration memory can be

accessed and programmed in serial fashion. RB6 and

RB7 are Schmitt Trigger inputs in this mode.

The sequence that enters the device into the Program-

ming/Verify mode places all other logic into the RESET

state (the MCLR pin was initially at VIL). This means

that all I/O are in the RESET state (high impedance

inputs).

The normal sequence for programming is to use the

load data command to set a value to be written at the

selected address. Issue the “begin programming com-

mand” followed by “read data command” to verify and

then, increment the address.

2.3.1 SERIAL PROGRAM/VERIFY

OPERATION

The RB6 pin is used as a clock input pin, and the RB7

pin is used for entering command bits and data

input/output during serial operation. To input a com-

mand, the clock pin (RB6) is cycled six times. Each

command bit is latched on the falling edge of the clock

with the Least Significant bit (LSb) of the command

being input first. The data on pin RB7 is required to

have a minimum setup and hold time (see AC/DC

specifications in Table 5-1), with respect to the falling

edge of the clock. Commands that have data associ-

ated with them (read and load) are specified to have a

minimum delay of 1 µs between the command and the
data. After this delay, the clock pin is cycled 16 times

with the first cycle being a START bit and the last cycle

being a STOP bit. Data is also input and output LSb

first.

Therefore, during a read operation, the LSb will be

transmitted onto pin RB7 on the rising edge of the sec-

ond cycle, and during a load operation, the LSb will be

latched on the falling edge of the second cycle. A min-

imum 1 µs delay is also specified between consecutive
commands.

All commands are transmitted LSb first. Data words are

also transmitted LSb first. The data is transmitted on

the rising edge and latched on the falling edge of the

clock. To allow for decoding of commands and reversal

of data pin configuration, a time separation of at least

1 µs is required between a command and a data word
(or another command).

The available commands (Load Configuration and

Load Data for Program Memory) are discussed in the

following sections.

Note: Do not allow excess time when transition-

ing MCLR between VIL and VIHH; this can

cause spurious program executions to

occur. The maximum transition time is

1TCY + TPWRT (if enabled) +

1024 TOSC (for LP, HS and XT modes only)

where TCY is the Instruction Cycle Time,

TPWRT is the Power-up Timer Period, and

TOSC is the Oscillator Period (all values in

µs or ns).
For specific values, refer to the Electrical

Characteristics section of the Device Data

Sheet for the particular device.
 2003 Microchip Technology Inc. DS30262E-page 3-149

PIC16F8X
2.3.1.1 Load Configuration

After receiving this command, the program counter

(PC) will be set to 2000h. By then applying 16 cycles to

the clock pin, the chip will load 14-bits in a “data word,”

as described above, to be programmed into the config-

uration memory. A description of the memory mapping

schemes of the program memory for normal operation

and Configuration mode operation is shown in

Figure 2-1. After the configuration memory is entered,

the only way to get back to the user program memory

is to exit the Program/Verify Test mode by taking MCLR

below VIL.

2.3.1.2 Load Data for Program Memory

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied, as

described previously. A timing diagram for the load data

command is shown in Figure 5-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F83/CR83/F84/CR84

Command Mapping (MSb ... LSb) Data

Load Configuration 0 0 0 0 0 0 0, data (14), 0

Load Data for Program Memory 0 0 0 0 1 0 0, data (14), 0

Read Data from Program Memory 0 0 0 1 0 0 0, data (14), 0

Increment Address 0 0 0 1 1 0

Begin Erase Programming Cycle 0 0 1 0 0 0

Load Data for Data Memory 0 0 0 0 1 1 0, data (14), 0

Read Data from Data Memory 0 0 0 1 0 1 0, data (14), 0

Bulk Erase Program Memory 0 0 1 0 0 1

Bulk Erase Data Memory 0 0 1 0 1 1

TABLE 2-2: COMMAND MAPPING FOR PIC16F84A

Command Mapping (MSb ... LSb) Data

Load Configuration X X 0 0 0 0 0, data (14), 0

Load Data for Program Memory X X 0 0 1 0 0, data (14), 0

Read Data from Program Memory X X 0 1 0 0 0, data (14), 0

Increment Address X X 0 1 1 0

Begin Erase Programming Cycle 0 0 1 0 0 0

Begin Programming Only Cycle 0 1 1 0 0 0

Load Data for Data Memory X X 0 0 1 1 0, data (14), 0

Read Data from Data Memory X X 0 1 0 1 0, data (14), 0

Bulk Erase Program Memory X X 1 0 0 1

Bulk Erase Data Memory X X 1 0 1 1
DS30262E-page 3-150  2003 Microchip Technology Inc.

PIC16F8X
FIGURE 2-2: PROGRAM FLOW CHART - PIC16F8X PROGRAM MEMORY

Start

Set VDD = VDDP

Program Cycle

Read Data
Command

Data Correct?

Report
Programming

Failure

All Locations
Done?

Verify all
Locations @

VDDMIN

Data Correct?

Verify all
Locations @

VDDMAX

Data Correct?

Done

Increment
Address

Command

Report Verify
Error @
VDDMIN

Report Verify
Error @
VDDMAX

Load Data
Command

Begin
Programming

Command

Wait 8 ms - PIC16F84A

PROGRAM CYCLE

No

No

No

No

Wait 20 ms - All Others
 2003 Microchip Technology Inc. DS30262E-page 3-151

PIC16F8X
FIGURE 2-3: PROGRAM FLOW CHART - PIC16F8X CONFIGURATION MEMORY

Program ID

Start

Load
Configuration

Data

Location? Program Cycle
Read Data
Command

Data Correct?
Report

Programming
Failure

Increment
Address

Command

Address =
0x2004?

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Program
Cycle

(Config. Word)

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Report Program
Configuration
Word Error

Done

Yes

No

No

Yes

YesNo

No

Yes

Yes

No
DS30262E-page 3-152  2003 Microchip Technology Inc.

PIC16F8X
2.3.1.3 Load Data for Data Memory

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied. How-

ever, the data memory is only 8-bits wide, and thus,

only the first 8-bits of data after the START bit will be

programmed into the data memory. It is still necessary

to cycle the clock the full 16 cycles, in order to allow the

internal circuitry to reset properly. The data memory

contains 64 words. Only the lower 8 bits of the PC are

decoded by the data memory, and therefore, if the PC

is greater than 0x3F, it will wrap around and address a

location within the physically implemented memory.

2.3.1.4 Read Data from Program Memory

After receiving this command, the chip will transmit

data bits out of the program memory (user or configu-

ration) currently accessed, starting with the second ris-

ing edge of the clock input. The RB7 pin will go into

Output mode on the second rising clock edge, and it

will revert back to Input mode (hi-impedance) after the

16th rising edge. A timing diagram of this command is

shown in Figure 5-2.

2.3.1.5 Read Data from Data Memory

After receiving this command, the chip will transmit

data bits out of the data memory starting with the sec-

ond rising edge of the clock input. The RB7 pin will go

into Output mode on the second rising edge, and it will

revert back to Input mode (hi-impedance) after the 16th

rising edge. As previously stated, the data memory is

8-bits wide, and therefore, only the first 8 bits that are

output are actual data.

2.3.1.6 Increment Address

The PC is incremented when this command is

received. A timing diagram of this command is shown

in Figure 5-3.

2.3.1.7 Begin Erase/Program Cycle

A load command must be given before every begin

programming command. Programming of the appro-

priate memory (configuration memory, user program

memory or data memory) will begin after this command

is received and decoded. An internal timing mechanism

executes an erase before write. The user must allow for

both erase and programming cycle times for program-

ming to complete. No “end programming” command is

required.

2.3.1.8 Begin Programming

This command is available only on the PIC16F84A.

A load command must be given before every begin

programming command. Programming of the appro-

priate memory (configuration memory, user program

memory or data memory) will begin after this command

is received and decoded. An internal timing mechanism

executes a write. The user must allow for program

cycle time for programming to complete. No “end pro-

gramming” command is required.

This command is similar to the ERASE/PROGRAM

CYCLE command, except that a word erase is not

done. It is recommended that a bulk erase be per-

formed before starting a series of programming only

cycles.
 2003 Microchip Technology Inc. DS30262E-page 3-153

PIC16F8X
2.3.1.9 Bulk Erase Program Memory

After this command is performed, the next program

command will erase the entire program memory.

To perform a bulk erase of the program memory, the

following sequence must be performed.

For PIC16F84A, perform the following commands:

1. Do a “Load Data All ‘1’s” command

2. Do a “Bulk Erase User Memory” command

3. Do a “Begin Programming” command

4. Wait 10 ms to complete bulk erase

If the address is pointing to the configuration memory

(2000h - 200Fh), then both the user memory and the

configuration memory will be erased. The configuration

word will not be erased, even if the address is pointing

to location 2007h.

For PIC16CR83/CR84 and PIC16F84, perform the

following commands:

1. Issue Command 2 (write program memory)

2. Send out 3FFFH data

3. Issue Command 1 (toggle select even rows)

4. Issue Command 7 (toggle select even rows)

5. Issue Command 8 (begin programming)

6. Delay 10 ms

7. Issue Command 1 (toggle select even rows)

8. Issue Command 7 (toggle select even rows)

2.3.1.10 Bulk Erase Data Memory

To perform a bulk erase of the data memory, the follow-

ing sequence must be performed.

For PIC16F84A, perform the following commands:

1. Do a “Load Data All ‘1’s” command

2. Do a “Bulk Erase Data Memory” command

3. Do a “Begin Programming” command

4. Wait 10 ms to complete bulk erase

For PIC16CR83/CR84 and PIC16F84, perform the

data memory:

5. Send out 3FFFH data

6. Issue Command 1 (toggle select even rows)

7. Issue Command 7 (toggle select even rows)

8. Issue Command 8 (begin data)

9. Delay 10 ms

10. Issue Command 1 (toggle select even rows)

11. Issue Command 7 (toggle select even rows)

2.4 Programming Algorithm Requires

Variable VDD

The PIC16F8X devices use an intelligent algorithm.

The algorithm calls for program verification at VDDMIN,

as well as VDDMAX. Verification at VDDMIN ensures

good “erase margin”. Verification at VDDMAX ensures

good “program margin”.

The actual programming must be done with VDD in the

VDDP range (see Table 5-1):

VDDP = VCC range required during programming

VDDMIN = minimum operating VDD spec for the part

VDDMAX = maximum operating VDD spec for the part

Programmers must verify the PIC16F8X devices at

their specified VDDMAX and VDDMIN levels. Since

Microchip may introduce future versions of the

PIC16F8X devices with a broader VDD range, it is best

that these levels are user selectable (defaults are

acceptable).

Note: If the device is code protected

(PIC16F84A), the BULK ERASE com-

mand will not work.

Note: All BULK ERASE operations must take

place at 4.5 to 5.5 VDD range.

Note: Any programmer not meeting these

requirements may only be classified as

“prototype” or “development” programmer,

but not a “production” quality programmer.
DS30262E-page 3-154  2003 Microchip Technology Inc.

PIC16F8X
3.0 CONFIGURATION WORD

Most of the PIC16F8X devices have five configuration

bits. These bits can be set (reads ‘0’), or left unchanged
(reads ‘1’) to select various device configurations. Their
usage in the Device Configuration Word is shown in

Register 3-1.

3.1 Device ID Word

The device ID word for the PIC16F84A device is

located at 2006h. Older devices do not have device ID.

REGISTER 3-1: CONFIGURATION WORD: PIC16F83/84/84A, PIC16CR83/84

TABLE 3-1: DEVICE ID WORD

Device
Device ID Value

Dev Rev

PIC16F84A 00 0101 011 X XXXX

For PIC16F83/84/84A:

CP CP CP CP CP CP CP CP CP CP PWTREN WDTEN FOSC1 FOSC0

FOR PIC16CR83/84:

CP CP CP CP CP CP DP CP CP CP PWTREN WDTEN FOSC1 FOSC0

bit13 bit0

bit 13-8,

bit 6-4

CP: Code Protection bits(1)

1 = Code protection off
0 = Code protection on

bit 7 For PIC16F83/84/84A:

CP: Code Protection bits(1)

1 = Code protection off
0 = Code protection on

For PIC16CR83/84:

DP: Data Memory Code Protection bit

1 = Code protection off
0 = Data memory is code protected

bit 3 PWTREN: Power-up Timer Enable bit

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

Note 1: All of the CP bits have to be given the same value to enable the code protection scheme listed.
 2003 Microchip Technology Inc. DS30262E-page 3-155

PIC16F8X
4.0 CODE PROTECTION

For PIC16F8X devices, once code protection is

enabled, all program data memory locations read all

‘0’s. The ID locations and the configuration word read
out in an unscrambled fashion. Further programming is

disabled for the entire program memory as well as data

memory. It is possible to program the ID locations and

the configuration word.

For PIC16CR8X devices, once code protection is

enabled, all program memory locations read all ‘0’s;
data memory locations read all ‘1’s.

A description of the code protection schemes for the

various PIC16F8X devices is provided on page 157.

For each device, the bit configuration for the device

configuration word to enable code protection is pro-

vided. This is followed with a comparison of read and

write operations for selected memory spaces in both

protected and unprotected modes.

4.1 Disabling Code Protection

It is recommended that the following procedure be per-

formed before any other programming is attempted. It

is also possible to turn code protection off (code protect

bit = ‘1’) using this procedure; however, all data within
the program memory and the data memory will be

erased when this procedure is executed, and thus,

the security of the data or code is not compro-

mised.

Procedure to disable code protect:

1. Execute load configuration (with a ‘1’ in
bits 4-13, code protect)

2. Increment to configuration word location

(2007h)

3. Execute command (000001)

4. Execute command (000111)

5. Execute ‘Begin Programming’ (001000)

6. Wait 10 ms

7. Execute command (000001)

8. Execute command (000111)

4.2 Embedding Configuration Word

and ID Information in the HEX File

Note: To allow portability of code, the program-

mer is required to read the configuration

word and ID locations from the HEX file

when loading the HEX file. If configuration

word information was not present in the

HEX file, then a simple warning message

may be issued. Similarly, while saving a

HEX file, configuration word and ID infor-

mation must be included. An option to not

include this information may be provided.

Specifically for the PIC16F8X, the

EEPROM data memory should also be

embedded in the HEX file (see Section 5.1).

Microchip Technology Inc. feels strongly

that this feature is important for the benefit

of the end customer.
DS30262E-page 3-156  2003 Microchip Technology Inc.

PIC16F8X
Device: PIC16F83

To code protect: 0000000000XXXX

Device: PIC16CR83

To code protect: 0000000000XXXX

Device: PIC16CR84

To code protect: 0000000000XXXX

Device: PIC16F84

To code protect: 0000000000XXXX

Device: PIC16F84A

To code protect: 0000000000XXXX

Legend: X = Don’t care

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (2007h) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

All memory Read All ’0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations [2000h : 2003h] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (2007h) Read Unscrambled Read Unscrambled

All memory Read All ’0’s for Program Memory,
Read All ’1’s for Data Memory -
Write Disabled

Read Unscrambled, Data Memory -

Write Enabled

ID Locations [2000h : 2003h] Read Unscrambled Read Unscrambled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (2007h) Read Unscrambled Read Unscrambled

All memory Read All ’0’s for Program Memory,
Read All ’1’s for Data Memory -
Write Disabled

Read Unscrambled, Data Memory -

Write Enabled

ID Locations [2000h : 2003h] Read Unscrambled Read Unscrambled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (2007h) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

All memory Read All ’0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations [2000h : 2003h] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

Program Memory Segment R/W in Protected Mode R/W in Unprotected Mode

Configuration Word (2007h) Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled

All memory Read All ’0’s, Write Disabled Read Unscrambled, Write Enabled

ID Locations [2000h : 2003h] Read Unscrambled, Write Enabled Read Unscrambled, Write Enabled
 2003 Microchip Technology Inc. DS30262E-page 3-157

PIC16F8X
4.3 Checksum Computation

4.3.1 CHECKSUM

Checksum is calculated by reading the contents of the

PIC16F8X memory locations and adding up the

opcodes, up to the maximum user addressable loca-

tion, e.g., 1FFh for the PIC16F83. Any carry bits

exceeding 16-bits are neglected. Finally, the configura-

tion word (appropriately masked) is added to the

checksum. Checksum computation for each member of

the PIC16F8X devices is shown in Table 4-1.

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The Least Significant 16 bits of this sum are the check-

sum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

Note that some older devices have an additional value

added in the checksum. This is to maintain compatibil-

ity with older device programmer checksums.

TABLE 4-1: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank

Value

25E6h at 0

and Max

Address

PIC16F83 OFF

ON

SUM[000h:1FFh] + CFGW & 3FFFh

CFGW & 3FFFh + SUM_ID

3DFFh

3E0Eh

09CDh

09DCh

PIC16CR83 OFF

ON

SUM[000h:1FFh] + CFGW & 3FFFh

CFGW & 3FFFh + SUM_ID

3DFFh

3E0Eh

09CDh

09DCh

PIC16F84 OFF

ON

SUM[000h:3FFh] + CFGW & 3FFFh

CFGW & 3FFFh + SUM_ID

3BFFh

3C0Eh

07CDh

07DCh

PIC16CR84 OFF

ON

SUM[000h:3FFh] + CFGW & 3FFFh

CFGW & 3FFFh + SUM_ID

3BFFh

3C0Eh

07CDh

07DCh

PIC16F84A OFF

ON

SUM[000h:3FFh] + CFGW & 3FFFh

CFGW & 3FFFh + SUM_ID

3BFFh

3C0Eh

07CDh

07DCh

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a to b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example, ID0 =01h, ID1 = 02h, ID3 = 03h, ID4 = 04h, then SUM_ID = 1234h.

*Checksum= [Sum of all the individual expressions] MODULO [FFFFh]

+ = Addition

& = Bitwise AND
DS30262E-page 3-158  2003 Microchip Technology Inc.

PIC16F8X
5.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

5.1 Embedding Data EEPROM

Contents in HEX File

The programmer should be able to read data EEPROM

information from a HEX file and conversely (as an

option), write data EEPROM contents to a HEX file,

along with program memory information and fuse

information.

The 64 data memory locations are logically mapped,

starting at address 2100h. The format for data memory

storage is one data byte per address location, LSB

aligned.

TABLE 5-1: AC/DC CHARACTERISTICS

TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

Standard Operating Conditions

Operating Temperature: +10°C ≤ TA ≤ +40°C, unless otherwise stated, (25°C is recommended)
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V, unless otherwise stated

Parameter

No.
Sym. Characteristic Min. Typ. Max. Units

Conditions/Comme

nts

VDDP Supply voltage during programming 4.5 5.0 5.5 V

VDDV Supply voltage during verify VDDMIN VDDMAX V (Note 1)

VIHH High voltage on MCLR for Test mode

entry

12 14.0 V (Note 2)

IDDP Supply current (from VDD) during

program/verify

50 mA

IHH Supply current from VIHH (on MCLR) 200 µA

VIH1 (RB6, RB7) input high level 0.8 VDD V Schmitt Trigger input

VIL1 (RB6, RB7) input low level MCLR

(Test mode selection)

0.2 VDD V Schmitt Trigger input

P1 TvHHR MCLR rise time (VIL to VIHH) for Test

mode entry

8.0 µs

P2 Tset0 RB6, RB7 setup time (before pattern

setup time)

100 ns

P3 Tset1 Data in setup time before clock ↓ 100 ns

P4 Thld1 Data in hold time after clock ↓ 100 ns

P5 Tdly1 Data input not driven to next clock

input (delay required between com-

mand/data or command/command)

1.0 µs

P6 Tdly2 Delay between clock ↓ to clock ↑ of
next command or data

1.0 µs

P7 Tdly3 Clock to data out valid (during read
data)

80 ns

P8 Thld0 RB<7:6> hold time after MCLR ↑ 100 ns

— — Erase cycle time — — 4 ms PIC16F84A only

— — Program cycle time — — 4 ms PIC16F84A only

— — Erase and program time —

—

—

—

8

20

ms

ms

PIC16F84A only

All other devices

Note 1: Program must be verified at the minimum and maximum VDD limits for the part.

2: VIHH must be greater than VDD + 4.5V to stay in Programming/Verify mode.
 2003 Microchip Technology Inc. DS30262E-page 3-159

PIC16F8X
FIGURE 5-1: LOAD DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-2: READ DATA COMMAND (PROGRAM/VERIFY)

FIGURE 5-3: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

}}}}

100 ns
min.

P4
P3

000

1 µs min.

P5

1 µs min.

P6

0

155432165

Program/Verify Test Mode

0

43

0

100 ns

P4

1

100 ns
min.

P3

RESET

21

100 ns

P8

VIHH

RB6
(CLOCK)

RB7
(DATA) 0

MCLR
P2

P1

}

00

1 µs

P5

1 µs min.

P6

155432165

Program/Verify Test Mode

0

43

0

100

P4

1

100 ns
min.

P3

RESET

21

100 ns

P8

VIHH

RB6
(CLOCK)

RB7
(DATA) 0

MCLR

RB7 = Output
RB7
Input

P7

}

P2

ns

min.

} }

000 0 0 01 1

1 2 3 4 5 6 1 2

100 ns
min

P3 P4

P6

1 µs min.
Next Command

P5

1 µs min.

VIHH

MCLR

RB6

(CLOCK)

(DATA)

RB7

RESET
Program/Verify Test Mode
DS30262E-page 3-160  2003 Microchip Technology Inc.

PIC16F62X
PIC16F62X EEPROM Memory Programming Specification
This document includes the

programming specifications for the

following devices:

• PIC16F627

• PIC16F628

• PIC16LF627

• PIC16LF628

1.0 PROGRAMMING THE
PIC16F62X

The PIC16F62X is programmed using a serial method.

The Serial mode will allow the PIC16F62X to be pro-

grammed while in the users system. This allows for

increased design flexibility. This programming specifi-

cation applies to PIC16F62X devices in all packages.

PIC16F62X devices may be programmed using a sin-

gle +5 volt supply (Low Voltage Programming mode).

1.1 Hardware Requirements

The PIC16F62X requires one programmable power

supply for VDD (4.5V to 5.5V) and a VPP of 12V to 14V,

or VPP of 4.5V to 5.5V, when using low voltage. Both

supplies should have a minimum resolution of 0.25V.

1.2 Programming Algorithm Requires

Variable VDD

The PIC16F62X uses an intelligent algorithm. The

algorithm calls for program verification at VDDMIN as

well as VDDMAX. Verification at VDDMIN ensures good

“erase margin”. Verification at VDDMAX ensures good

“program margin”.

The actual programming must be done with VDD in the

VDDP range.

VDDP = VCC range required during programming.

VDDMIN = minimum operating VDD spec for the part.

VDDMAX = maximum operating VDD spec for the part.

Programmers must verify the PIC16F62X is at its spec-

ified VDDMAX and VDDMIN levels. Since Microchip may

introduce future versions of the PIC16F62X with a

broader VDD range, it is best that these levels are user

selectable (defaults are ok).

1.3 Programming Mode

The Programming mode for the PIC16F62X allows pro-

gramming of user program memory, data memory,

special locations used for ID, and the configuration

word.

Note: All references to PIC16F62X also apply to

PIC16LF62X.

Note: Any programmer not meeting these

requirements may only be classified as a

“prototype” or “development” programmer,

not a “production” quality programmer.
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-161

PIC16F62X
Pin Diagram

TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F62X

PDIP, SOIC

RA2/AN2/VREF

RA3/AN3/CMP1

RA4/T0CKI/CMP2

RA5/MCLR/THV

VSS

RB0/INT

RB1/RX/DT

RB2/TX/CK

RB3/CCP1

RA1/AN1

RA0/AN0

RA7/OSC1/CLKIN

RA6/OSC2/CLKOUT

VDD

RB7/DATA/T1OSI

RB6/CLOCK/T1OSO/T1CKI

RB5

RB4/PGM

• 1

2

3

4

5

7

8

9

18

17

16

15

14

12

11

10

6 13

RA2/AN2/VREF

RA3/AN3/CMP1

RA4/T0CKI/CMP2

RA5/MCLR/THV

VSS

RB0/INT

RB1/RX/DT

RB2/TX/CK

RB3/CCP1

RA1/AN1

RA0/AN0

RA7/OSC1/CLKIN

RA6/OSC2/CLKOUT

VDD

RB7/DATA/T1OSI

RB6/CLOCK/T1OSO/T1CKI

RB5

RB4/PGM

• 1

2

3

4

5

7

8

9

18

17

16

15

14

12

1110

6

13

VDDVSS

19

20

SSOP

P
IC

1
6
F
6
2
X

P
IC

1
6
F
6
2
X

Pin Name
During Programming

Function Pin Type Pin Description

RB4 PGM I Low Voltage Programming input if configuration bit equals 1

RB6 CLOCK I Clock input

RB7 DATA I/O Data input/output

MCLR Programming Mode P* Program Mode Select

VDD VDD P Power Supply

VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

* In the PIC16F62X, the programming high voltage is internally generated. To activate the Programming

mode, high voltage needs to be applied to MCLR input. Since the MCLR is used for a level source, this

means that MCLR does not draw any significant current.
DS30034D-page 3-162 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
2.0 PROGRAM DETAILS

2.1 User Program Memory Map

The user memory space extends from 0x0000 to

0x1FFF. In Programming mode, the program memory

space extends from 0x0000 to 0x3FFF, with the first

half (0x0000-0x1FFF) being user program memory and

the second half (0x2000-0x3FFF) being configuration

memory. The PC will increment from 0x0000 to 0x1FFF

and wrap to 0x000, 0x2000 to 0x3FFF and wrap

around to 0x2000 (not to 0x0000). Once in configura-

tion memory, the highest bit of the PC stays a ‘1’, thus

always pointing to the configuration memory. The only

way to point to user program memory is to reset the

part and re-enter Program/Verify mode as described in

Section 2.3.

In the configuration memory space, 0x2000-0x200F

are physically implemented. However, only locations

0x2000 through 0x2007 are available. Other locations

are reserved. Locations beyond 0x200F will physically

access user memory (See Figure 2-1).

2.2 User ID Locations

A User may store identification information (ID) in four

User ID locations. The User ID locations are mapped in

[0x2000 : 0x2003]. These locations read out normally,

even after the code protection is enabled.

FIGURE 2-1: PROGRAM MEMORY MAPPING

Note 1: All other locations in PICmicro® MCU

configuration memory are reserved and

should not be programmed.

2: Only the low order 4 bits of the User ID

locations may be included in the device

checksum. See Section 3.1 for checksum

calculation details.

1FFF

2000ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Device ID

Configuration Word

2000

2008

3FFF

0x3FF

Not Implemented

Implemented

1 KW

Implemented

2 KW

Implemented

0x07FF

2001

2002

2003

2004

2005

2006

2007

Implemented
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-163

PIC16F62X
2.3 Program/Verify Mode

The programming module operates on simple com-

mand sequences entered in serial fashion with the data

being latched on the failing edge of the clock pulse. The

sequences are entered serially, via the clock and data

lines, which are Schmitt Trigger in this mode. The gen-

eral form for all command sequences consists of a 6-bit

command and conditionally a 16-bit data word. Both

command and data word are clocked LSb first.

The signal on the data pin is required to have a

minimum setup and hold time (see AC/DC specifica-

tions), with respect to the falling edge of the clock.

Commands that have data associated with them (read

and load), require a minimum delay of Tdly1 between

the command and the data.

The 6-bit command sequences are shown in Table 2-1.

TABLE 2-1: COMMAND MAPPING FOR PIC16F627/PIC16F628

Command Mapping (MSb … LSb) Data

Load Configuration X X 0 0 0 0 0, data (14), 0

Load Data for Program Memory X X 0 0 1 0 0, data (14), 0

Load Data for Data Memory X X 0 0 1 1 0, data (8), zero (6), 0

Increment Address X X 0 1 1 0

Read Data from Program Memory X X 0 1 0 0 0, data (14), 0

Read Data from Data Memory X X 0 1 0 1 0, data (8), zero (6), 0

Begin Erase/Programming Cycle 0 0 1 0 0 0

Begin Programming Only Cycle 0 1 1 0 0 0

Bulk Erase Program Memory X X 1 0 0 1

Bulk Erase Data Memory X X 1 0 1 1

Bulk Erase Setup 1 0 0 0 0 0 1

Bulk Erase Setup 2 0 0 0 1 1 1
DS30034D-page 3-164 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
The optional 16-bit data word will either be an input to,

or an output from the PICmicro® MCU, depending on

the command. Load Data commands will be input, and

Read Data commands will be output. The 16-bit data

word only contains 14 bits of data to conform to the 14-

bit program memory word. The 14 bits are centered

within the 16-bit word, padded with a leading and trail-

ing zero.

Program/Verify mode may be entered via one of two

methods. High voltage Program/Verify is entered by

holding clock and data pins low while raising VPP first,

then VDD, as shown in Figure 2-2. Low voltage Pro-

gram/Verify mode is entered by raising VDD, then

MCLR and PGM, as shown in Figure 2-3. The PC will

be set to ‘0’ upon entering into Program/Verify mode.

The PC can be changed by the execution of either an

increment PC command, or a Load Configuration com-

mand, which sets the PC to 0x2000.

All other logic is held in the RESET state while in Pro-

gram/Verify mode. This means that all I/O are in the

RESET state (high impedance inputs).

FIGURE 2-2: ENTERING HIGH

VOLTAGE PROGRAM/

VERIFY MODE

FIGURE 2-3: ENTERING LOW

VOLTAGE PROGRAM/

VERIFY MODE

Note: PGM should be held low to prevent inad-

vertent entry into LVP mode.

VPP

VDD

DATA

CLOCK

Tppdp Thld0

PGM

Note: If the device is in LVP mode, raising VPP to

VIHH does not override LVP mode.

VDD

MCLR

DATA

CLOCK

Tppdp Thld0

PGM
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-165

PIC16F62X
2.3.1 LOAD DATA FOR PROGRAM

MEMORY

Load data for program memory receives a 14-bit word,

and readies it to be programmed at the PC location.

See Figure 2-4 for timing details.

FIGURE 2-4: LOAD DATA COMMAND FOR PROGRAM MEMORY

2.3.2 LOAD DATA FOR DATA MEMORY

Load data for data memory receives an 8-bit byte, and

readies it to be programmed into data memory at loca-

tion specified by the lower 7 bits of the PC. Though the

data byte is only 8-bits wide, all 16 clock cycles are

required to allow the programming module to reset

properly.

FIGURE 2-5: LOAD DATA COMMAND FOR DATA MEMORY

Tset1

Thld1

Tdly2

1 2 3 4 5 6

0 1 0 0 0 0

1 2 3 4 5 15 16

stp_bit

RB6
(CLOCK)

RB7

(DATA)

X X X X

Tset1

Thld1

Tdly2

1 2 3 4 5 6

1 1 0 0 0 0

1 2 3 4 5 15 16

stp_bit

RB6
(CLOCK)

RB7

(DATA)

X X X X
DS30034D-page 3-166 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
2.3.3 LOAD DATA FOR CONFIGURATION

MEMORY

The load configuration command advances the PC to

the start of configuration memory (0x2000-0x200F).

Once it is set to the configuration region, only exiting

and re-entering Program/Verify mode will reset PC to

the user memory space (see Figure 2-6).

FIGURE 2-6: LOAD CONFIGURATION

2.3.4 BEGIN PROGRAMMING ONLY

CYCLE

Begin Programming Only Cycle programs the previ-

ously loaded word into the appropriate memory (User

Program, Data or Configuration memory). A Load

command must be given before every Program-

ming command. Programming begins after this com-

mand is received and decoded. An internal timing

mechanism executes the write. The user must allow for

program cycle time before issuing the next command.

No “End Programming” command is required.

This command is similar to the Erase/Program com-

mand, except that a word erase is not done. It is

recommended that a bulk erase be performed before

starting a series of programming only cycles.

FIGURE 2-7: BEGIN PROGRAMMING ONLY CYCLE

Tdly2

1 2 3 4 5 6

0 0 0 0 0 0

1 2 3 4 5 15 16

stp_bit

RB6
(CLOCK)

RB7

(DATA)

X X X X

Tset1

Thld1

Tdly2

1 2 3 4 5 6

0 0 0 1 0 0

1 2 3 4 5 16

stp_bit

RB6

(CLOCK)

(DATA)

X X X X

15

RB7

next
command

Tprog
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-167

PIC16F62X
2.3.5 BEGIN ERASE/PROGRAMMING

CYCLE

Begin Erase/Programming Cycle erases the word

address specified by the PC, and programs the previ-

ously loaded word into the appropriate memory (User

Program, Data or Configuration memory). A Load

command must be given before every Program-

ming command. Erasing and programming begins

after this command is received and decoded. An inter-

nal timing mechanism executes an erase before the

write. The user must allow for both erase and program

cycle time before issuing the next command. No “End

Programming” command is required.

FIGURE 2-8: BEGIN ERASE/PROGRAMMING CYCLE

2.3.6 INCREMENT ADDRESS

The PC is incremented when this command is

received. See Figure 2-9.

FIGURE 2-9: INCREMENT ADDRESS COMMAND (PROGRAM/VERIFY)

Tdly2

1 2 3 4 5 6

0 0 0 1 0 0

1 2 3 4 5 16

stp_bit

RB6

(CLOCK)

(DATA)

X X X X

15

RB7

next
command

 Tera + Tprog

Tdly1Tset1

Thld1

Tdly2

1 2 3 4 5 6

0 1 1 X X

1 2

X 00

Next Command

RB6
(CLOCK)

RB7
(DATA)

} }
DS30034D-page 3-168 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
2.3.7 READ DATA FROM PROGRAM

MEMORY

Read data from program memory reads the word

addressed by the PC and transmits it on the data pin

during the data phase of the command. This command

will report words from either user or configuration mem-

ory, depending on the PC setting. The data pin will go

into Output mode on the second rising clock edge and

revert back to input moved (hi-impedance) after the

16th rising edge.

FIGURE 2-10: READ DATA FROM PROGRAM MEMORY

2.3.8 READ DATA FROM DATA MEMORY

Read data from data memory reads the byte in data

memory addressed by the low order 7 bits of PC and

transmits it on the data pin during the data phase of the

command. The data pin will go into Output mode on the

second rising clock edge, and revert back to input

moved (hi-impedance) after the 16th rising edge. As

only 8 bits are transmitted, the last 8 bits are zero

padded.

FIGURE 2-11: READ DATA FROM DATA MEMORY

Tdly1Tset1

Thld1

Tdly2

1 2 3 4 5 6

0 0 1 0 X X

1 2 3 4 5 15 16

Tdly3

RB7 = input RB7 = output

RB7
input

Thld0

strt_bit stp_bit

RB6
(CLOCK)

RB7

(DATA)

Tset1

Thld1

Tdly2

1 2 3 4 5 6

1 0 1 0 X X

1 2 3 4 5 15 16

} }

Tdly3

RB7 = input RB7 = output
RB7
input

Thld0

strt_bit stp_bit

RB6
(CLOCK)

RB7

(DATA) Tdly1
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-169

PIC16F62X
2.3.9 BULK ERASE SETUP 1 AND BULK

ERASE SETUP 2

These commands are used in conjunction to reset the

configuration word. See Section 3.3 for details on how

to reset the configuration word.

FIGURE 2-12: BULK ERASE SETUP 1

FIGURE 2-13: BULK ERASE SETUP 2

Tdly2

1 2 3 4 5 6

1 0 0 0 0 0

1 2 3 4 5 15 16
Thld0

stp_bit

RB6
(CLOCK)

RB7

(DATA)

X X X X

Tdly2

1 2 3 4 5 6

1 1 1 0 0 0

1 2 3 4 5 15 16
Thld0

stp_bit

RB6
(CLOCK)

RB7

(DATA)

X X X X
DS30034D-page 3-170 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
3.0 COMMON PROGRAMMING
TASKS

These programming commands may be combined in

several ways, in order to accomplish different program-

ming goals.

3.1 Bulk Erase Program Memory

If the device is not code protected, the program mem-

ory can be erased with the Bulk Erase Program Mem-

ory command. See Section 3.4 for removing code

protection if it is set.

To perform a bulk erase of the program memory, the fol-

lowing sequence must be performed:

1. Execute a Load Data for Program Memory with

the data word set to all ‘1’s (0x3FFF).

2. Execute a Bulk Erase Program Memory com-

mand.

3. Execute a Begin Programming command.

4. Wait Tera for the erase cycle to complete.

If the address is pointing to the ID/configuration word

memory (0x2000-0x200F), then both ID locations and

program memory will be erased. However, the

configuration word will not be cleared by this method.

FIGURE 3-1: BULK ERASE PROGRAM MEMORY

Note: All bulk erase operations must take place

with VDD between 4.5-5.5V.

Note: If the device is code protected, the Bulk

Erase command will not work.

Tdly2

1 2 3 4 5 6

1 0 0 1 0 0

1 2 3 4 5 15 16

Tdly3

Thld0

stp_bit

RB6
(CLOCK)

RB7

(DATA)

X X X X
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-171

PIC16F62X
3.2 Bulk Erase Data Memory

If the device is not data protected, the program memory

can be erased with the Bulk Erase Data Memory com-

mand. See Section 3.3 for removing code protection, if

it is not set.

To perform a bulk erase of the data memory, the follow-

ing sequence must be performed:

1. Execute a Load Data for Data Memory with the

data word set to all ‘1’s (0x3FFF).

2. Execute a Bulk Erase Data Memory command.

3. Execute a Begin Programming command.

4. Wait Tera for the erase cycle to complete.

FIGURE 3-2: BULK ERASE DATA MEMORY COMMAND

3.3 Disabling Code Protection

Once the device has been code protected, the code

protected regions of program memory read out as

zeros and the device may no longer be written until the

following process has been completed. The Bulk Erase

commands will not erase the device. Instead, the fol-

lowing procedure, to reset the code protection bits,

must be used. Resetting the Code Protection bits will

also erase Program, Data and Configuration memory,

thus maintaining security of the code and data.

1. Execute a Load Configuration command (data

word 0x0000) to set PC to 0x2000.

2. Execute Increment Address command 7 times

to advance PC to 0x2007.

3. Execute Bulk Erase Setup 1 command.

4. Execute Bulk Erase Setup 2 command.

5. Execute Begin Erase Programming command.

6. Wait Tera + Tprog.

7. Execute Bulk Erase Setup 1 command.

8. Execute Bulk Erase Setup 2 command.

Note: All bulk erase operations must take place

with VDD between 4.5-5.5V

Note: If the device is code protected, the Bulk

Erase command will not work.

Tset1

Thld1

Tdly2

1 2 3 4 5 6

1 1 0 1 0 0

1 2 3 4 5 15 16

Tdly3

Thld0

stp_bit

RB6
(CLOCK)

RB7

(DATA)

X X X X
DS30034D-page 3-172 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
3.4 Programming Program Memory

FIGURE 3-3: PROGRAM FLOW CHART - PIC16F62X PROGRAM MEMORY

Program Cycle

Read Data
from Program

Data Correct?
Report

Programming
Failure

All Locations
Done?

Verify all
Locations @
VDDMIN

Data Correct?

Verify all
Locations @
VDDMAX

Data Correct?

Done

Increment
Address
Command

Report Verify
Error @
VDDMIN

Report Verify
Error @
VDDMAX

Load Data
Command

Begin
Programming
Command

Wait tprog

PROGRAM CYCLE

No

No

No

No

 Start
High Voltage

Programming

Set MCLR = VIHH

Set VDD = VDD

 Start
Low Voltage

Programming

Set MCLR = VDD

Set RB4 = VDD

Memory

Set VDD = VDDSet RB4 = VSS
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-173

PIC16F62X
FIGURE 3-4: PROGRAM FLOW CHART - PIC16F62X CONFIGURATION MEMORY

Program ID

Start

Load
Configuration

Data

Location? Program Cycle
Read Data
Command

Data Correct?

Report
Programming

Failure

Increment
Address
Command

Address =
0x2004?

Increment
Address
Command

Increment
Address
Command

Increment
Address
Command

Program
Cycle

(Config. Word)

Set VDD =
VDDMIN

Read Data
CommandData Correct?

Set VDD =
VDDMAX

Read Data
CommandData Correct?

Report Program
Configuration
Word Error

Done

Yes

No

No

Yes

YesNo

No

Yes

Yes

No
DS30034D-page 3-174 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
3.5 Program Data Memory

FIGURE 3-5: PROGRAM FLOW CHART - PIC16F62X DATA MEMORY

Start

Program Cycle

READ DATA

Data Memory

Data Correct?

Report
Programming

Failure

All Locations
Done?

Data Correct?

Done

BEGIN
PROGRAMMING

Command

Wait Tprog

PROGRAM CYCLE

No

No

No

INCREMENT
ADDRESS
Command

from

Report Verify
Error

LOAD DATA

Data Memory

for
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-175

PIC16F62X
3.6 Programming Range of Program Memory

FIGURE 3-6: PROGRAM FLOW CHART - PIC16F62X PROGRAM MEMORY

Program Cycle

Read Data
from Program

Data Correct?
Report

Programming
Failure

All Locations
Done?

Verify all
Locations @
VDDMIN &

Done

Increment
Address
Command

Load Data
Command

Begin
Programming
Command

Wait Tprog

PROGRAM CYCLE

No

No

 Start
High Voltage

Programming

Set MCLR = VIHH

Set VDD = VDD

 Start
Low Voltage

Programming

Set MCLR = VDD

Set RB4 = VDD

Memory

Set VDD = VDD

VDDMAX

Address
Command

Increment
Address
 = Start
Address?

Set RB4 = VSS

No
DS30034D-page 3-176 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
3.7 Configuration Word

The PIC16F62X has several configuration bits. These

bits can be set (reads ‘0’), or left unchanged (reads ‘1’),

to select various device configurations.

3.8 Device ID Word

The device ID word for the PIC16F62X is hard coded at

2006h.

TABLE 3-1: DEVICE ID VALUES

Device
Device ID Value

Dev Rev

PIC16F627 00 0111 101 x xxxx

PIC16F628 00 0111 110 x xxxx
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-177

PIC16F62X
REGISTER 3-1: CONFIGURATION WORD FOR PIC16F627/628 (ADDRESS: 2007h)

CP1 CP0 CP1 CP0 — CPD LVP BOREN MCLRE FOSC2 PWRTEN WDTEN F0SC1 F0SC0

bit 13 bit 0

bit 13-10 CP1:CP0: Code Protection bits (2)

Code protection for 2K program memory

11 = Program memory code protection off

10 = 0400h-07FFh code protected

01 = 0200h-07FFh code protected

00 = 0000h-07FFh code protected

Code protection for 1K program memory

11 = Program memory code protection off

10 = Program memory code protection off

01 = 0200h-03FFh code protected

00 = 0000h-03FFh code protected

bit 9 Unimplemented: Read as ‘1’

bit 8 CPD: Data Code Protection bit (3)

1 = Data memory code protection off

0 = Data memory code protected

bit 7 LVP: Low Voltage Programming Enable bit

1 = RB4/PGM pin has PGM function, Low Voltage Programming enabled

0 = RB4/PGM is digital input, HV on MCLR must be used for programming

bit 6 BODEN: Brown-out Detect Reset Enable bit (1)

1 = BOD Reset enabled

0 = BOD Reset disabled

bit 5 MCLRE: RA5/MCLR Pin Function Select bit

1 = RA5/MCLR pin function is MCLR

0 = RA5/MCLR pin function is digital input, MCLR internally tied to VDD

bit 3 PWRTEN: Power-up Timer Enable bit (1)

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTEN: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 4, 1-0 FOSC2:FOSC0: Oscillator Selection bits (4)

111 = ER oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN

110 = ER oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor on RA7/OSC1/CLKIN

101 = INTRC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN

100 = INTRC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN

011 = EXTCLK: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN

010 = HS oscillator: High speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN

001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN

000 = LP oscillator: Low power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN

Note 1: Enabling Brown-out Detect Reset automatically enables Power-up Timer (PWRT) regardless of the value

of bit PWRTEN. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed. The

entire program EEPROM will be erased if the code protection is reset.

3: The entire data EEPROM will be erased when the code protection is turned off. The calibration memory is

not erased.

4: When MCLR is asserted in INTRC or ER mode, the internal clock oscillator is disabled.

Legend:

R = Readable bit

-n = Value at POR

W = Writable bit

’1’ = Bit is set

U = Unimplemented bit, read as ‘0’

’0’ = Bit is cleared x = Bit is unknown
DS30034D-page 3-178 Preliminary  2003 Microchip Technology Inc.

PIC16F62X
3.9 Embedding Configuration Word and ID Information in the HEX File

3.10 Checksum Computation

3.10.1 CHECKSUM

Checksum is calculated by reading the contents of the

PIC16F62X memory locations and adding up the

opcodes up to the maximum user addressable location

(e.g., 0x7FF for the PIC16F628). Any carry bits,

exceeding 16 bits, are neglected. Finally, the configura-

tion word (appropriately masked) is added to the

checksum. Checksum computation for each member of

the PIC16F62X devices is shown in Table 3-2.

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The Least Significant 16 bits of this sum is the

checksum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum,

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

To allow portability of code, the programmer is required to read the configuration word and ID locations from the HEX

file when loading the HEX file. If configuration word information was not present in the HEX file, then a simple warning

message may be issued. Similarly, while saving a HEX file, configuration word and ID information must be included.

An option to not include this information may be provided.

Specifically for the PIC16F62X, the EEPROM data memory should also be embedded in the HEX file (see

Section 4.1).

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

Note: Some older devices have an additional

value added in the checksum. This is to

maintain compatibility with older device

programmer checksums.

TABLE 3-2: CHECKSUM COMPUTATION

Device

Code

Protect
Checksum*

Blank

Value

0x25E6 at 0

and Max

Address

PIC16F627 OFF SUM[0x0000:0x3FFF] + CFGW & 0x3DFF 0x39FF 0x05CD

0x200 : 0x3FF SUM[0x0000:0x01FF] + CFGW & 0x3DFF + SUM_ID 0x4DFE 0xFFB3

ALL CFGW & 0x3DFF + SUM_ID 0x3BFE 0x07CC

PIC16F628 OFF SUM[0x0000:0x07FF] + CFGW & 0x3DFF 0x35FF 0x01CD

0x400 : 0x7FF SUM[0x0000:0x03FF] + CFGW & 0x3DFF +SUM_ID 0x5BFE 0x0DB3

0x200 : 0x7FF SUM[0x0000:0x01FF] + CFGW & 0x3DFF + SUM_ID 0x49FE 0xFBB3

ALL CFGW & 0x3DFF + SUM_ID 0x37FE 0x03CC

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a to b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

 For example, ID0 = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND
 2003 Microchip Technology Inc. Preliminary DS30034D-page 3-179

PIC16F62X
4.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

4.1 Embedding Data EEPROM Contents in HEX File

The programmer should be able to read data EEPROM information from a HEX file, and conversely (as an option) write

data EEPROM contents to a HEX file, along with program memory information and fuse information.

The 128 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage

is one data byte per address location, LSB aligned.

TABLE 4-1: AC/DC CHARACTERISTICS TIMING REQUIREMENTS FOR PROGRAM/VERIFY

MODE

AC/DC Characteristics

Standard Operating Conditions (unless otherwise stated)

Operating Temperature: 0°C ≤ TA ≤ +70°C
Operating Voltage: 4.5V ≤ VDD ≤ 5.5V

Characteristics Sym Min Typ Max Units Conditions/Comments

General

VDD level for word operations, pro-

gram memory VDD 2.0 5.5 V

VDD level for word operations, data

memory VDD 2.0 5.5 V

VDD level for bulk erase/write opera-

tions, program and data memory VDD 4.5 5.5 V

High voltage on MCLR and

RA4/T0CKI for Programming mode

entry

VIHH VDD + 3.5 13.5 V

MCLR rise time (VSS to VIHH) for Pro-

gramming mode entry

TVHHR 1.0 µs

Hold time after VPP↑ Tppdp 5 µs

(CLOCK, DATA) input high level VIH1 0.8 VDD V Schmitt Trigger input

(CLOCK, DATA) input low level VIL1 0.2 VDD V Schmitt Trigger input

CLOCK, DATA setup time before

MCLR↑
Tset0 100 ns

CLOCK, DATA hold time after MCLR↑ Thld0 5 µs

Serial Program/Verify

Data in setup time before clock↓ Tset1 100 ns

Data in hold time after clock↓ Thld1 100 ns

Data input not driven to next clock

input (delay required between com-

mand/data or command/command)

Tdly1 1.0 µs

Delay between clock↓ to clock↑ of
next command or data

Tdly2 1.0 µs

Clock↑ to data out valid (during read
data)

Tdly3 80 ns

Erase cycle time Tera 2 5 ms

Programming cycle time Tprog 4 8 ms

Time delay from program to compare

(HV discharge time)

Tdis 0.5 µs
DS30034D-page 3-180 Preliminary  2003 Microchip Technology Inc.

PIC16F87X
EEPROM Memory Programming Specification
This document includes the programming

specifications for the following devices:

1.0 PROGRAMMING THE
PIC16F87X

The PIC16F87X is programmed using a serial method.

The Serial mode will allow the PIC16F87X to be pro-

grammed while in the user’s system. This allows for

increased design flexibility. This programming specifi-

cation applies to PIC16F87X devices in all packages.

1.1 Programming Algorithm

Requirements

The programming algorithm used depends on the

operating voltage (VDD) of the PIC16F87X device.

Algorithm 1 is designed for a VDD range of

2.2V ≤ VDD < 5.5V. Algorithm 2 is for a range of

4.5V ≤ VDD ≤ 5.5V. Either algorithm can be used with

the two available programming entry methods. The first

method follows the normal Microchip Programming

mode entry of applying a VPP voltage of 13V ± .5V. The

second method, called Low Voltage ICSPTM or LVP for

short, applies VDD to MCLR and uses the I/O pin RB3

to enter Programming mode. When RB3 is driven to

VDD from ground, the PIC16F87X device enters

Programming mode.

1.2 Programming Mode

The Programming mode for the PIC16F87X allows pro-

gramming of user program memory, data memory, spe-

cial locations used for ID, and the configuration word.

Pin Diagram

• PIC16F870 • PIC16F874

• PIC16F871 • PIC16F876

• PIC16F872 • PIC16F877

• PIC16F873

PDIP, SOIC

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0/INT

VDD

VSS

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2/VREF

RA3/AN3/VREF

RA4/T0CKI

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

VDD

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RD0/PSP0

RD1/PSP1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

P
IC

1
6
F
8
7
7
/8
7
4
/8
7
1

P
IC
1
6
F
8
7
6
/8
7
3
/8
7
2
/8
7
0

10

11

2

3

4

5

6

1

8

7

9

12

13

14 15

16

17

18

19

20

23

24

25

26

27

28

22

21

MCLR/VPP

RA0/AN0

RA1/AN1

RA2/AN2/VREF

RA3/AN3/VREF

RA4/T0CKI

RA5/AN4/SS

VSS

OSC1/CLKIN

OSC2/CLKOUT

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0/INT

VDD

VSS

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA
 2003 Microchip Technology Inc. DS39025F-page 3-181

PIC16F87X
=

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16F87X

Pin Name
During Programming

Function Pin Type Pin Description

RB3 PGM I Low voltage ICSP programming input if LVP

configuration bit equals 1

RB6 CLOCK I Clock input

RB7 DATA I/O Data input/output

MCLR VTEST MODE P* Program Mode Select

VDD VDD P Power Supply

VSS VSS P Ground

Legend: I = Input, O = Output, P = Power

* In the PIC16F87X, the programming high voltage is internally generated. To activate the Programming mode, high

voltage needs to be applied to the MCLR input. Since the MCLR is used for a level source, this means that MCLR

does not draw any significant current.
DS39025F-page 3-182  2003 Microchip Technology Inc.

PIC16F87X
2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to

0x1FFF (8K). In Programming mode, the program

memory space extends from 0x0000 to 0x3FFF, with

the first half (0x0000-0x1FFF) being user program

memory and the second half (0x2000-0x3FFF) being

configuration memory. The PC will increment from

0x0000 to 0x1FFF and wrap to 0x0000, 0x2000 to

0x3FFF and wrap around to 0x2000 (not to 0x0000).

Once in configuration memory, the highest bit of the PC

stays a ‘1’, thus always pointing to the configuration

memory. The only way to point to user program mem-

ory is to reset the part and re-enter Program/Verify

mode, as described in Section 2.4.

In the configuration memory space, 0x2000-0x200F

are physically implemented. However, only locations

0x2000 through 0x2007 are available. Other locations

are reserved. Locations beyond 0x200F will physically

access user memory (see Figure 2-1).

2.2 Data EEPROM Memory

The EEPROM data memory space is a separate block

of high endurance memory that the user accesses

using a special sequence of instructions. The amount

of data EEPROM memory depends on the device and

is shown below in number of bytes.

The contents of data EEPROM memory have the capa-

bility to be embedded into the HEX file.

The programmer should be able to read data EEPROM

information from a HEX file and conversely (as an

option), write data EEPROM contents to a HEX file,

along with program memory information and configura-

tion bit information.

The 256 data memory locations are logically mapped

starting at address 0x2100. The format for data mem-

ory storage is one data byte per address location, LSB

aligned.

2.3 ID Locations

A user may store identification information (ID) in four

ID locations. The ID locations are mapped in [0x2000 :

0x2003]. It is recommended that the user use only the

four Least Significant bits of each ID location. In some

devices, the ID locations read out in an unscrambled

fashion after code protection is enabled. For these

devices, it is recommended that ID location is written as

“11 1111 1000 bbbb” where ‘bbbb’ is ID information.

In other devices, the ID locations read out normally,

even after code protection. To understand how the

devices behave, refer to Table 5-1.

To understand the scrambling mechanism after code

protection, refer to Section 4.0.

Device # of Bytes

PIC16F870 64

PIC16F871 64

PIC16F872 64

PIC16F873 128

PIC16F874 128

PIC16F876 256

PIC16F877 256
 2003 Microchip Technology Inc. DS39025F-page 3-183

PIC16F87X
TABLE 2-1: PROGRAM MEMORY MAPPING

2K words 4K words 8K words

Implemented Implemented Implemented

Implemented Implemented Implemented

Implemented Implemented

Implemented Implemented

Reserved Implemented

Reserved Implemented

Implemented

Implemented

Reserved Reserved Reserved

Reserved Reserved Reserved

ID Location

ID Location

ID Location

ID Location

Reserved

Reserved

Device ID

Configuration Word

2000h

2001h

2002h

2003h

2004h

2005h

2006h

2007h

0h

1FFh

3FFh

400h

7FFh

800h

BFFh

C00h

FFFh

1000h

1FFFh

2008h

2100h

3FFFh
DS39025F-page 3-184  2003 Microchip Technology Inc.

PIC16F87X
2.4 Program/Verify Mode

The Program/Verify mode is entered by holding pins

RB6 and RB7 low, while raising MCLR pin from VIL to

VIHH (high voltage). In this mode, the state of the RB3

pin does not effect programming. Low voltage ICSP

Programming mode is entered by raising RB3 from VIL

to VDD and then applying VDD to MCLR. Once in this

mode, the user program memory and the configuration

memory can be accessed and programmed in serial

fashion. The mode of operation is serial, and the mem-

ory that is accessed is the user program memory. RB6

and RB7 are Schmitt Trigger Inputs in this mode.

The sequence that enters the device into the Program-

ming/Verify mode places all other logic into the RESET

state (the MCLR pin was initially at VIL). This means

that all I/O are in the RESET state (high impedance

inputs).

The normal sequence for programming is to use the

load data command to set a value to be written at the

selected address. Issue the begin programming com-

mand followed by read data command to verify, and

then increment the address.

A device RESET will clear the PC and set the address

to 0. The “increment address” command will increment

the PC. The “load configuration” command will set the

PC to 0x2000. The available commands are shown in

Table 2-2.

2.4.1 LOW VOLTAGE ICSP

PROGRAMMING MODE

Low voltage ICSP Programming mode allows a

PIC16F87X device to be programmed using VDD only.

However, when this mode is enabled by a configuration

bit (LVP), the PIC16F87X device dedicates RB3 to

control entry/exit into Programming mode.

When LVP bit is set to ‘1’, the low voltage ICSP pro-

gramming entry is enabled. Since the LVP configura-

tion bit allows low voltage ICSP programming entry in

its erased state, an erased device will have the LVP bit

enabled at the factory. While LVP is ‘1’, RB3 is dedi-

cated to low voltage ICSP programming. Bring RB3 to

VDD and then MCLR to VDD to enter programming

mode. All other specifications for high voltage ICSP™

apply.

To disable low voltage ICSP mode, the LVP bit must be

programmed to ‘0’. This must be done while entered

with High Voltage Entry mode (LVP bit = 1). RB3 is now

a general purpose I/O pin.

2.4.2 SERIAL PROGRAM/VERIFY

OPERATION

The RB6 pin is used as a clock input pin, and the RB7

pin is used for entering command bits and data

input/output during serial operation. To input a com-

mand, the clock pin (RB6) is cycled six times. Each

command bit is latched on the falling edge of the clock,

with the Least Significant bit (LSb) of the command

being input first. The data on pin RB7 is required to

have a minimum setup and hold time (see AC/DC

specifications), with respect to the falling edge of the

clock. Commands that have data associated with them

(read and load) are specified to have a minimum delay

of 1 µs between the command and the data. After this
delay, the clock pin is cycled 16 times with the first cycle

being a START bit and the last cycle being a STOP bit.

Data is also input and output LSb first.

Therefore, during a read operation, the LSb will be

transmitted onto pin RB7 on the rising edge of the sec-

ond cycle, and during a load operation, the LSb will be

latched on the falling edge of the second cycle. A min-

imum 1 µs delay is also specified between consecutive
commands.

All commands are transmitted LSb first. Data words are

also transmitted LSb first. The data is transmitted on

the rising edge and latched on the falling edge of the

clock. To allow for decoding of commands and reversal

of data pin configuration, a time separation of at least

1 µs is required between a command and a data word
(or another command).

The commands that are available are:

2.4.2.1 Load Configuration

After receiving this command, the program counter

(PC) will be set to 0x2000. By then applying 16 cycles

to the clock pin, the chip will load 14-bits in a “data

word,” as described above, to be programmed into the

configuration memory. A description of the memory

mapping schemes of the program memory for normal

operation and Configuration mode operation is shown

in Figure 2-1. After the configuration memory is

entered, the only way to get back to the user program

memory is to exit the Program/Verify Test mode by

taking MCLR low (VIL).

2.4.2.2 Load Data for Program Memory

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied, as

described previously. A timing diagram for the load data

command is shown in Figure 6-1.

Note: The OSC must not have 72 osc clocks

while the device MCLR is between VIL and

VIHH.
 2003 Microchip Technology Inc. DS39025F-page 3-185

PIC16F87X
2.4.2.3 Load Data for Data Memory

After receiving this command, the chip will load in a

14-bit “data word” when 16 cycles are applied. How-

ever, the data memory is only 8-bits wide, and thus,

only the first 8-bits of data after the START bit will be

programmed into the data memory. It is still necessary

to cycle the clock the full 16 cycles in order to allow the

internal circuitry to reset properly. The data memory

contains up to 256 bytes. If the device is code pro-

tected, the data is read as all zeros.

2.4.2.4 Read Data from Program Memory

After receiving this command, the chip will transmit

data bits out of the program memory (user or configu-

ration) currently accessed, starting with the second ris-

ing edge of the clock input. The RB7 pin will go into

Output mode on the second rising clock edge, and it

will revert back to Input mode (hi-impedance) after the

16th rising edge. A timing diagram of this command is

shown in Figure 6-2.

2.4.2.5 Read Data from Data Memory

After receiving this command, the chip will transmit

data bits out of the data memory starting with the sec-

ond rising edge of the clock input. The RB7 pin will go

into Output mode on the second rising edge, and it will

revert back to Input mode (hi-impedance) after the 16th

rising edge. As previously stated, the data memory is

8-bits wide, and therefore, only the first 8-bits that are

output are actual data.

2.4.2.6 Increment Address

The PC is incremented when this command is

received. A timing diagram of this command is shown

in Figure 6-3.

2.4.2.7 Begin Erase/Program Cycle

A load command must be given before every begin

programming command. Programming of the appro-

priate memory (test program memory, user program

memory or data memory) will begin after this command

is received and decoded. An internal timing mechanism

executes an erase before write. The user must allow for

both erase and programming cycle times for program-

ming to complete. No “end programming” command is

required.

2.4.2.8 Begin Programming

A load command must be given before every begin

programming command. Programming of the appro-

priate memory (test program memory, user program

memory or data memory) will begin after this command

is received and decoded. An internal timing mechanism

executes a write. The user must allow for program

cycle time for programming to complete. No “end pro-

gramming” command is required.

This command is similar to the ERASE/PROGRAM

CYCLE command, except that a word erase is not

done. It is recommended that a bulk erase be per-

formed before starting a series of programming only

cycles.

Note: The Begin Program operation must take

place at 4.5 to 5.5 VDD range.

TABLE 2-2: COMMAND MAPPING FOR PIC16F87X

Command Mapping (MSB … LSB) Data
Voltage

Range

Load Configuration X X 0 0 0 0 0, data (14), 0 2.2V - 5.5V

Load Data for Program Memory X X 0 0 1 0 0, data (14), 0 2.2V - 5.5V

Read Data from Program Memory X X 0 1 0 0 0, data (14), 0 2.2V - 5.5V

Increment Address X X 0 1 1 0 2.2V - 5.5V

Begin Erase Programming Cycle 0 0 1 0 0 0 2.2V - 5.5V

Begin Programming Only Cycle 0 1 1 0 0 0 4.5V - 5.5V

Load Data for Data Memory X X 0 0 1 1 0, data (14), 0 2.2V - 5.5V

Read Data from Data Memory X X 0 1 0 1 0, data (14), 0 2.2V - 5.5V

Bulk Erase Setup1 0 0 0 0 0 1 4.5V - 5.5V

Bulk Erase Setup2 0 0 0 1 1 1 4.5V - 5.5V
DS39025F-page 3-186  2003 Microchip Technology Inc.

PIC16F87X
2.5 Erasing Program and Data

Memory

Depending on the state of the code protection bits, pro-

gram and data memory will be erased using different

procedures. The first set of procedures is used when

both program and data memories are not code pro-

tected. The second set of procedures must be used

when either memory is code protected. A device pro-

grammer should determine the state of the code pro-

tection bits and then apply the proper procedure to

erase the desired memory.

2.5.1 ERASING NON-CODE PROTECTED

PROGRAM AND DATA MEMORY

When both program and data memories are not code

protected, they must be individually erased using the

following procedures. The only way that both memories

are erased using a single procedure is if code protec-

tion is enabled for one of the memories. These proce-

dures do not erase the configuration word or ID

locations.

Procedure to bulk erase program memory:

1. Execute a Load Data for Program Memory com-

mand (000010) with a '1' in all locations
(0x3FFF)

2. Execute a Bulk Erase Setup1 command

(000001)

3. Execute a Bulk Erase Setup2 command

(000111)

4. Execute a Begin Erase/Programming command

(001000)

5. Wait 8 ms

6. Execute a Bulk Erase Setup1 command

(000001)

7. Execute a Bulk Erase Setup2 command

(000111)

Procedure to bulk erase data memory:

1. Execute a Load Data for Data Memory com-

mand (000011) with a '1' in all locations
(0x3FFF)

2. Execute a Bulk Erase Setup1 command

(000001)

3. Execute a Bulk Erase Setup2 command

(000111)

4. Execute a Begin Erase/Programming command

(001000)

5. Wait 8 ms

6. Execute a Bulk Erase Setup1 command

(000001)

7. Execute a Bulk Erase Setup2 command

(000111)

2.5.2 ERASING CODE PROTECTED

MEMORY

For the PIC16F87X devices, once code protection is

enabled, all protected program and data memory loca-

tions read all '0's and further programming is disabled.
The ID locations and configuration word read out

unscrambled and can be reprogrammed normally. The

only procedure to erase a PIC16F87X device that is

code protected is shown in the following procedure.

This method erases program memory, data memory,

configuration bits and ID locations. Since all data

within the program and data memory will be erased

when this procedure is executed, the security of

the data or code is not compromised.

1. Execute a Load Configuration command

(000000) with a '1' in all locations (0x3FFF)

2. Execute Increment Address command

(000110) to set address to configuration word
location (0x2007)

3. Execute a Bulk Erase Setup1 command

(000001)

4. Execute a Bulk Erase Setup2 command

(000111)

5. Execute a Begin Erase/Programming command

(001000)

6. Wait 8 ms

7. Execute a Bulk Erase Setup1 command

(000001)

8. Execute a Bulk Erase Setup2 command

(000111)
 2003 Microchip Technology Inc. DS39025F-page 3-187

PIC16F87X
FIGURE 2-1: FLOW CHART - PIC16F87X PROGRAM MEMORY (2.2V ≤ VDD < 5.5V)

START

Set VDD = VDDP

Load Data

Wait

All Locations
Done?

Verify all
Locations

Data Correct?

DONE

Increment
Address

Command

Report Verify
Error

No

No

Command

Begin
Erase/Programming

Command

tera + tprog
DS39025F-page 3-188  2003 Microchip Technology Inc.

PIC16F87X
FIGURE 2-2: FLOW CHART – PIC16F87X PROGRAM MEMORY (4.5V ≤ VDD ≤ 5.5V)

START

Set VDD = VDDP

Load Data

Wait tprog

All Locations
Done?

DONE

Increment
Address

Command

No

Command

Begin
Programming Only

Command

Bulk Erase
Sequence

Verify all

Data Correct?

Locations

Increment
Address

Command

NoReport Verify
Error
 2003 Microchip Technology Inc. DS39025F-page 3-189

PIC16F87X
FIGURE 2-3: FLOW CHART – PIC16F87X CONFIGURATION MEMORY (2.2V ≤ VDD < 5.5V)

Program ID

START

Load
Configuration

Data

Location? Program Cycle
Read Data
Command

Data Correct?

Report
Programming

Failure

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Program
Cycle

(Config. Word)

Read Data
CommandData Correct?

Report Program
Configuration
Word Error

DONE

Yes

No

YesNo

No

Yes

Yes

No

Load Data
Command

Begin
Erase/Program

Command

Wait

Address =
0x2004?

PROGRAM CYCLE

tera + tprog
DS39025F-page 3-190  2003 Microchip Technology Inc.

PIC16F87X
FIGURE 2-4: FLOW CHART - PIC16F87X CONFIGURATION MEMORY

Program ID

START

Load
Configuration

Data

Location? Program Cycle
Read Data
Command

Data Correct?

Report
Programming

Failure

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Increment
Address

Command

Program
Cycle

(Config. Word)

Read Data
CommandData Correct?

Report Program
Configuration
Word Error

DONE

Yes

No

YesNo

No

Yes

Yes

No

Load Data
Command

Begin
Program Only

Command*

Wait tprog

Address =
0x2004?

PROGRAM CYCLE

* Assumes that a bulk erase was issued before programming configuration word. If not, use the program flow from Figure 2-4.
 2003 Microchip Technology Inc. DS39025F-page 3-191

PIC16F87X
3.0 CONFIGURATION WORD

The PIC16F87X has several configuration bits. These

bits can be set (reads ‘0’), or left unchanged (reads ‘1’),

to select various device configurations.

3.1 Device ID Word

The device ID word for the PIC16F87X is located at

2006h.

TABLE 3-1: DEVICE ID VALUE

Device
Device ID Value

Dev Rev

PIC16F870 00 1101 000 x xxxx

PIC16F871 00 1101 001 x xxxx

PIC16F872 00 1000 111 x xxxx

PIC16F873 00 1001 011 x xxxx

PIC16F874 00 1001 001 x xxxx

PIC16F876 00 1001 111 x xxxx

PIC16F877 00 1001 101 x xxxx
DS39025F-page 3-192  2003 Microchip Technology Inc.

PIC16F87X
REGISTER 3-1: CONFIG: CONFIGURATION WORD FOR PIC16F873/874/876/877

(ADDRESS 2007h)

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/P-1 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

CP1 CP0 RESV — WRT CPD LVP BODEN CP1 CP0 PWRTE WDTE F0SC1 F0SC0

bit 13 bit 0

bit 13-12

bit 5-4

CP1:CP0: FLASH Program Memory Code Protection bits(2)

4 K Devices:

11 = Code protection off

10 = 0F00h to 0FFFh code protected

01 = 0800h to 0FFFh code protected

00 = 0000h to 0FFFh code protected

8 K Devices:

11 = Code protection off

10 = 1F00h to 1FFFh code protected

01 = 1000h to 1FFFh code protected

00 = 0000h to 1FFFh code protected

bit 11 Reserved: Set to ‘1’ for normal operation

bit 10 Unimplemented: Read as ‘1’

bit 9 WRT: FLASH Program Memory Write Enable bit

1 = Unprotected program memory may be written to by EECON control

0 = Unprotected program memory may not be written to by EECON control

bit 8 CPD: Data EE Memory Code Protection bit

1 = Code protection off

0 = Data EE memory code protected

bit 7 LVP: Low Voltage ICSP Programming Enable bit

1 = RB3/PGM pin has PGM function, low voltage programming enabled

0 = RB3 is digital I/O, HV on MCLR must be used for programming

bit 6 BODEN: Brown-out Reset Enable bit(2)

1 = BOR enabled

0 = BOR disabled

bit 3 PWRTE: Power-up Timer Enable bit

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTE: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator

10 = HS oscillator

01 = XT oscillator

00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of

bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
 2003 Microchip Technology Inc. DS39025F-page 3-193

PIC16F87X
REGISTER 3-2: CONFIG: CONFIGURATION WORD FOR PIC16F870/871/872 (ADDRESS 2007h)

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/P-1 U-0 R/P-1 R/P-1 R/P-1 R/P-1 R/P-1

CP1 CP0 RESV — WRT CPD LVP BODEN CP1 CP0 PWRTE WDTE F0SC1 F0SC0

bit 13 bit 0

bit 13-12

bit 5-4

CP1:CP0: FLASH Program Memory Code Protection bits(2)

11 = Code protection off

10 = Not supported

01 = Not supported

00 = 0000h to 07FFh code protected

bit 11 Reserved: Set to ‘1’ for normal operation

bit 10 Unimplemented: Read as ‘1’

bit 9 WRT: FLASH Program Memory Write Enable bit

1 = Unprotected program memory may be written to by EECON control

0 = Unprotected program memory may not be written to by EECON control

bit 8 CPD: Data EE Memory Code Protection bit

1 = Code protection off

0 = Data EE memory code protected

bit 7 LVP: Low Voltage ICSP Programming Enable bit

1 = RB3/PGM pin has PGM function, low voltage programming enabled

0 = RB3 is digital I/O, HV on MCLR must be used for programming

bit 6 BODEN: Brown-out Reset Enable bit(2)

1 = BOR enabled

0 = BOR disabled

bit 3 PWRTE: Power-up Timer Enable bit

1 = PWRT disabled

0 = PWRT enabled

bit 2 WDTE: Watchdog Timer Enable bit

1 = WDT enabled

0 = WDT disabled

bit 1-0 FOSC1:FOSC0: Oscillator Selection bits

11 = RC oscillator

10 = HS oscillator

01 = XT oscillator

00 = LP oscillator

Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT), regardless of the value of

bit PWRTE. Ensure the Power-up Timer is enabled any time Brown-out Reset is enabled.

2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

- n = Value when device is unprogrammed u = Unchanged from programmed state
DS39025F-page 3-194  2003 Microchip Technology Inc.

PIC16F87X
4.0 EMBEDDING THE CONFIGURATION WORD AND ID INFORMATION IN THE
HEX FILE

To allow portability of code, the programmer is required to read the configuration word and ID locations from the HEX

file when loading the HEX file. If configuration word information was not present in the HEX file, then a simple warning

message may be issued. Similarly, while saving a HEX file, configuration word and ID information must be included.

An option to not include this information may be provided.

Specifically for the PIC16F87X, the EEPROM data memory should also be embedded in the HEX file (see

Section 2.2).

Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.
 2003 Microchip Technology Inc. DS39025F-page 3-195

PIC16F87X
5.0 CHECKSUM COMPUTATION

Checksum is calculated by reading the contents of the

PIC16F87X memory locations and adding up the

opcodes, up to the maximum user addressable loca-

tion, e.g., 0x1FF for the PIC16F87X. Any carry bits

exceeding 16-bits are neglected. Finally, the configura-

tion word (appropriately masked) is added to the

checksum. Checksum computation for each member of

the PIC16F87X devices is shown in Table 5-1.

The checksum is calculated by summing the following:

• The contents of all program memory locations

• The configuration word, appropriately masked

• Masked ID locations (when applicable)

The Least Significant 16 bits of this sum are the

checksum.

The following table describes how to calculate the

checksum for each device. Note that the checksum cal-

culation differs depending on the code protect setting.

Since the program memory locations read out differ-

ently depending on the code protect setting, the table

describes how to manipulate the actual program mem-

ory values to simulate the values that would be read

from a protected device. When calculating a checksum

by reading a device, the entire program memory can

simply be read and summed. The configuration word

and ID locations can always be read.

Note that some older devices have an additional value

added in the checksum. This is to maintain compatibil-

ity with older device programmer checksums.
DS39025F-page 3-196  2003 Microchip Technology Inc.

PIC16F87X
TABLE 5-1: CHECKSUM COMPUTATION

Device
Code

Protect
Checksum*

Blank

Value

0x25E6 at 0

and max

address

PIC16F870 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD

ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C

PIC16F871 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD

ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C

PIC16F872 OFF SUM[0x0000:0x07FFF] + CFGW & 0x3BFF 0x33FF 0xFFCD

ALL CFGW & 0x3BFF + SUM_ID 0x3FCE 0x0B9C

PIC16F873 OFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF 0x2BFF 0xF7CD

0x0F00 : 0xFFF SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID 0x48EE 0xFAA3

0x0800 : 0xFFF SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID 0x3FDE 0xF193

ALL CFGW & 0x3BFF + SUM_ID 0x37CE 0x039C

PIC16F874 OFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF 0x2BFF 0xF7CD

0x0F00 : 0xFFF SUM[0x0000:0x0EFF] + CFGW & 0x3BFF +SUM_ID 0x48EE 0xFAA3

0x0800 : 0xFFF SUM[0x0000:0x07FF] + CFGW & 0x3BFF + SUM_ID 0x3FDE 0xF193

ALL CFGW & 0x3BFF + SUM_ID 0x37CE 0x039C

PIC16F876 OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF 0x1BFF 0xE7CD

0x1F00 : 0x1FFF SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID 0x28EE 0xDAA3

0x1000 : 0x1FFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

PIC16F877 OFF SUM[0x0000:0x1FFF] + CFGW & 0x3BFF 0x1BFF 0xE7CD

0x1F00 : 0x1FFF SUM[0x0000:0x1EFF] + CFGW & 0x3BFF +SUM_ID 0x28EE 0xDAA3

0x1000 : 0x1FFF SUM[0x0000:0x0FFF] + CFGW & 0x3BFF + SUM_ID 0x27DE 0xD993

ALL CFGW & 0x3BFF + SUM_ID 0x27CE 0xF39C

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a to b inclusive]

SUM_ID = ID locations masked by 0xF then made into a 16-bit value with ID0 as the most significant nibble.

For example, ID0 = 0x1, ID1 = 0x2, ID3 = 0x3, ID4 = 0x4, then SUM_ID = 0x1234

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

+ = Addition

& = Bitwise AND
 2003 Microchip Technology Inc. DS39025F-page 3-197

PIC16F87X
6.0 PROGRAM/VERIFY MODE ELECTRICAL CHARACTERISTICS

TABLE 6-1: TIMING REQUIREMENTS FOR PROGRAM/VERIFY MODE

AC/DC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

Operating Temperature: 0°C ≤ TA ≤ +70°C

Operating Voltage: 2.2V ≤ VDD ≤ 5.5V

Characteristics Sym Min Typ Max Units Conditions/Comments

General

VDD level for Algorithm 1 VDD 2.2 5.5 V Limited command set

(See Table 2-2)

VDD level for Algorithm 2 VDD 4.5 5.5 V All commands available

High voltage on MCLR for

high voltage programming entry VIHH VDD + 3.5 13.5 V

Voltage on MCLR for

low voltage ICSP programming entry

VIH 2.2 5.5 V

MCLR rise time (VSS to VHH) for Test

mode entry

tVHHR 1.0 µs

(RB6, RB7) input high level VIH1 0.8 VDD V Schmitt Trigger input

(RB6, RB7) input low level VIL1 0.2 VDD V Schmitt Trigger input

RB<7:6> setup time before MCLR ↑ tset0 100 ns

RB<7:6> hold time after MCLR ↑ thld0 5 µs

RB3 setup time before MCLR ↑ tset2 100 ns

Serial Program/Verify

Data in setup time before clock ↓ tset1 100 ns

Data in hold time after clock ↓ thld1 100 ns

Data input not driven to next clock input

(delay required between command/data or

command/command)

tdly1 1.0 µs

Delay between clock ↓ to clock ↑ of next

command or data

tdly2 1.0 µs

Clock ↑ to data out valid (during read data) tdly3 80 ns

Erase cycle time tera 2 4 ms

Programming cycle time tprog 2 4 ms
DS39025F-page 3-198  2003 Microchip Technology Inc.

PIC16F87X
FIGURE 6-1: LOAD DATA COMMAND MCLR = VIHH (PROGRAM/VERIFY)

FIGURE 6-2: READ DATA COMMAND MCLR = VIHH (PROGRAM/VERIFY)

FIGURE 6-3: INCREMENT ADDRESS COMMAND MCLR = VIHH (PROGRAM/VERIFY)

MCLR

VIHH

tset0

RB6
(Clock)

RB7
(Data)

RESET

tset1

thld1

tdly1
1 µs min.

Program/Verify Test Mode

tset1

thld1

100 ns min.

1 µs min.

tdly21 2 3 4 5 6

0 1 0 0 X X

1 2 3 4 5 15 16

strt_bit stp_bit

100 ns min.

}

thld0

} } }

MCLR

VIHH

tset0

RB6

(Clock)

RB7

(Data)

RESET

tdly1

1 µs min.

Program/Verify Test Mode

tset1

thld1

1 µs min.

tdly2

1 2 3 4 5 6

0 0 1 0 X X

1 2 3 4 5 15 16

100 ns min.

} }

tdly3

RB7 = input RB7 = output
RB7

thld0

strt_bit stp_bit

input

MCLR

VIHH

RB6
(Clock)

RB7
(Data)

RESET

tdly1

1 µs min.

Program/Verify Test Mode

tset1

thld1

1 µs min.

tdly2

1 2 3 4 5 6

0 1 1 X X

1 2

100 ns min.

} }

X 00

Next Command
 2003 Microchip Technology Inc. DS39025F-page 3-199

PIC16F87X
FIGURE 6-4: LOAD DATA COMMAND MCLR = VDD (PROGRAM/VERIFY)

FIGURE 6-5: READ DATA COMMAND MCLR = VDD (PROGRAM/VERIFY)

FIGURE 6-6: INCREMENT ADDRESS COMMAND MCLR = VDD (PROGRAM/VERIFY)

MCLR

VIH

tset0

RB6
(Clock)

RB7
(Data)

RESET

tset1

thld1

tdly1
1 µs min.

Program/Verify Test Mode

tset1

thld1

100 ns min.

1 µs min.

tdly21 2 3 4 5 6

0 1 0 0 X X

1 2 3 4 5 15 16

strt_bit stp_bit

100 ns min.

}

thld0

} } }

RB3

tset2

MCLR

VIH

tset0

RB6

(Clock)

RB7

(Data)

RESET

tdly1

1 µs min.

Program/Verify Test Mode

tset1

thld1

1 µs min.

tdly2

1 2 3 4 5 6

0 0 1 0 X X

1 2 3 4 5 15 16

100 ns min.
} }

tdly3

RB7 = input RB7 = output
RB7
input

thld0

strt_bit stp_bit

RB3

tset2

MCLR

VIH

RB6
(Clock)

RB7
(Data)

RESET

tdly1

1 µs min.

Program/Verify Test Mode

tset1

thld1

1 µs min.

tdly2

1 2 3 4 5 6

0 1 1 X X

1 2

100 ns min.

} }

X 00

Next Command

RB3

tset2
DS39025F-page 3-200  2003 Microchip Technology Inc.

IN-CIRCUIT SERIAL

PROGRAMMING™ GUIDE
Section 4 – Application Notes
IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) OF CALIBRATION PARAMETERS

USING A PICmicro® MICROCONTROLLER ... 4-1
 2003 Microchip Technology Inc. DS30277D-page 4-i

In-Circuit Serial Programming™ Guide
DS30277D-page 4-ii  2003 Microchip Technology Inc.

AN656
In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters

Using a PICmicro® Microcontroller
INTRODUCTION

Many embedded control applications, where sensor

offsets, slopes and configuration information are mea-

sured and stored, require a calibration step. Tradition-

ally, potentiometers or Serial EEPROM devices are

used to set up and store this calibration information.

This application note will show how to construct a pro-

gramming jig that will receive calibration parameters

from the application mid-range PICmicro® microcon-

trollers (MCU) and program this information into the

application baseline PICmicro MCU using the In-Circuit

Serial Programming (ICSP) protocol. This method uses

the PIC16CXXX In-Circuit Serial Programming algo-

rithm of the 14-bit core microcontrollers.

PROGRAMMING FIXTURE

A programming fixture is needed to assist with the self

programming operation. This is typically a small re-

usable module that plugs into the application PCB

being calibrated. Only five pin connections are needed

and this programming fixture can draw its power from

the application PCB to simplify the connections.

FIGURE 1:

Author: John Day

Microchip Technology Inc.

PIC16CXXX
Sensor(s)

Application I/O

To Application Input(s)

RAX

RBX

MCLR/VPP

VDD

VSS

RB7

RB6

+5V

10k

Customer Application PCB

VPP

VDD

VSS

RB7

RB6

Calibration Programming Jig

+13V VPP

Generator

PIC16C58

+5V +5V

VDD

GND_ON

VPP_ON VSS

MCLR

RB7
RB6
RB5
o_Q RB3

RB2

o_No` osc

Optional PC Connection

1k

Wait

Done
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJN

AN656
Electrical Interface

There are a total of five electrical connections needed

between the application PIC16CXXX microcontroller

and the programming jig:

• MCLR/VPP - High voltage pin used to place appli-

cation PIC16CXXX into programming mode

• VDD - +5 volt power supply connection to the

application PIC16CXXX

• VSS - Ground power supply connection to the

application PIC16CXXX

• RB6 - PORTB, bit6 connection to application

PIC16CXXX used to clock programming data

• RB7 - PORTB, bit7 connection to application

PIC16CXXX used to send programming data

This programming jig is intended to grab power from

the application power supply through the VDD connec-

tion. The programming jig will require 100 mA of peak

current during programming. The application will need

to set RB6 and RB7 as inputs, which means external

devices cannot drive these lines. The calibration data

will be sent to the programming jig by the application

PIC16CXXX through RB6 and RB7. The programming

jig will later use these lines to clock the calibration data

into the application PIC16CXXX.

Programming Issues

The PIC16CXXX programming specification suggests

verification of program memory at both Maximum and

Minimum VDD for each device. This is done to ensure

proper programming margins and to detect (and reject)

any improperly programmed devices. All production

quality programmers vary VDD from VDDmin to VDDmax

after programming and verify the device under each of

these conditions.

Since both the application voltage and it’s tolerances

are known, it is not necessary to verify the PIC16CXXX

calibration parameters at the device VDDmax and

VDDmin. It is only necessary to verify at the application

power supply Max and Min voltages. This application

note shows the nominal (+5V) verification routine and

hardware. If the power supply is a regulated +5V, this

is adequate and no additional hardware or software is

needed. If the application power supply is not regulated

(such as a battery powered or poorly regulated system)

it is important to complete a VDDmin and VDDmax veri-

fication cycle following the +5V verification cycle. See

programming specifications for more details on VDD

verification procedures.

√ PIC16C5X Programming Specifications -

DS30190

• PIC16C55X Programming Specifications -

DS30261

• PIC16C6X/7X/9XX Programming Specifications -

DS30228

• PIC16C84 Programming Specifications -

DS30189

The calibration programming and initial verification

MUST occur at +5V. If the application is intended to run

at lower (or higher voltages), a second verification pass

must be added where those voltages are applied to

VDD and the device is verified.

Note: The designer must consider environmental

conditions, voltage ranges, and aging

issues when determining VDD min/max

verification levels. Please refer to the pro-

gramming specification for the application

device.
apMMSRS_Jé~ÖÉ=QJO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
Communication Format (Application

Microcontroller to Programming Jig)

Unused program memory, in the application

PIC16CXXX, is left unprogrammed as all 1s; therefore

the unprogrammed program memory for the calibration

look-up table would contain 3FFF (hex). This is inter-

preted as an “ADDLW FF”. The application microcon-

troller simply needs one “RETLW FF” instruction at the

end of the space allocated in program memory for the

calibration parameter look-up table. When the applica-

tion microcontroller is powered up, it will receive a

“FFh” for each calibration parameter that is looked up;

therefore, it can detect that it is uncalibrated and jump

to the calibration code.

Once the calibration constants are calculated by the

application PICmicro MCU, they need to be communi-

cated to the (PIC16C58A based) programming jig. This

is accomplished through the RB6 and RB7 lines. The

format is a simple synchronous clock and data format

as shown in Figure .

A pull-down on the clock line is used to hold it low. The

application microcontroller needs to send the high and

low bytes of the target start address of the calibration

constants to the calibration jig. Next, the data bytes are

sent followed by a checksum of the entire data transfer

as shown in Figure 1.

Once the data transfer is complete, the checksum is

verified by the programming jig and the data printed at

9600 baud, 8-bits, no parity, 1 stop bit through RB3. A

connection to this pin is optional. Next the program-

ming jig applies +13V, programs and verifies the appli-

cation PIC16CXXX calibration parameters.

FIGURE 1:

RB6

RB7 CALbit7 CALbit6 CALbit5 CALbit4 CALbit3 CALbit2 CALbit1 CALbit0

AddrH AddrL Data 0 Data 1 Data N CKSUM
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJP

AN656
LED Operation

When the programming jig is waiting for communica-

tion from the application PICmicro MCU, both LEDs are

OFF. Once a valid data stream is received (with at least

one calibration byte and a correct checksum) the

WORK LED is lit while the calibration parameters are

printed through the optional RB3 port. Next, the DONE

LED is lit to indicate that these parameters are being

programmed and verified by the programming jig. Once

the programming is finished, the WORK LED is extin-

guished and the DONE LED remains lit. If any param-

eters fail programming, the DONE LED is extinguished;

therefore both LEDs would remain off.

FIGURE 2: ISP CALIBRATION JIG PROGRAMMER SCHEMATIC

T0CKI

VSS VDD

VCC VCC

VPP

VCC

VCC

VCC

VPP

VIN

VREF

VCC

VCC VCC
apMMSRS_Jé~ÖÉ=QJQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
Code Protection

Selection of the code protection configuration bits on

PIC16CXXX microcontrollers prevents further pro-

gramming of the program memory array. This would

prevent writing self calibration parameters if the device

is code protected prior to calibration. There are two

ways to address this issue:

1. Do not code protect the device when program-

ming it with the programmer. Add additional

code (See the PIC16C6X/7X programming

Spec) to the ISPPRGM.ASM to program the

code protection bit after complete verification of

the calibration parameters

2. Only code protect 1/2 or 3/4 of the program

memory with the programmer. Place the calibra-

tion constants into the unprotected part of pro-

gram memory.

Software Routines

There are two source code files needed for this appli-

cation note:

1. ISPTEST.ASM (Appendix A) Contains the source

code for the application PIC16CXXX, sets up the cali-

bration look-up table and implements the communica-

tion protocol to the programming jig.

2. ISPPRGM.ASM (Appendix B) Source code for a

PIC16C58A to implement the programming jig. This

waits for and receives the calibration parameters from

the application PIC16CXXX, places it into program-

ming mode and programs/verifies each calibration

word.

CONCLUSION

Typically, calibration information about a system is

stored in EEPROM. For calibration data that does not

change over time, the In-circuit Serial Programming

capability of the PIC16CXXX devices provide a simple,

cost effective solution to an external EEPROM. This

method not only decreases the cost of a design, but

also reduces the complexity and possible failure points

of the application.

TABLE 1: PARTS LIST FOR PIC16CXXX ISP CALIBRATION JIG

Bill of Material

Item Quantity Reference Part

1 2 C1,C2 15 pF

2 1 C3 620 pF

3 1 C4 0.1 mF

4 2 C5,C6 220 mF

5 2 D1,D2 LED

6 1 E1 PIC16C58

7 1 E2 LM78S40

8 1 J1 CON5

9 1 L1 270 mH

10 2 Q1,Q2 2N2222

11 2 Q3,Q4 2N2907

12 5 R1,R2,R3,R4,R15 1k

13 4 R5,R6,R12,R14 10k

14 2 R7,R8 270

15 1 R9 180

16 1 R10 23.7k

17 1 R11 2.49k

18 1 R13 2.2k

19 1 Y1 4.0 MHz
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJR

AN656
APPENDIX A:
MPASM 01.40.01 Intermediate ISPPRGM.ASM 3-31-1997 10:57:03 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ; Filename: ISPPRGM.ASM
 00002 ; **
 00003 ; * Author: John Day *
 00004 ; * Sr. Field Applications Engineer *
 00005 ; * Microchip Technology *
 00006 ; * Revision: 1.0 *
 00007 ; * Date August 25, 1995 *
 00008 ; * Part: PIC16C58 *
 00009 ; * Compiled using MPASM V1.40 *
 00010 ; **
 00011 ; * Include files: *
 00012 ; * P16C5X.ASM *
 00013 ; **
 00014 ; * Fuses: OSC: XT (4.0 Mhz xtal) *
 00015 ; * WDT: OFF *
 00016 ; * CP: OFF *
 00017
 ;***
 00018 ; This program is intended to be used as a self programmer
 00019 ; to store calibration constants into a lookup table
 00020 ; within the main system processor. A 4 Mhz crystal
 00021 ; is needed and an optional 9600 baud seiral port will
 00022 ; display the parameters to be programmed.
 00023 ;
 ;***
 00024 ; * Program Memory: *
 00025 ; * Words - communication with test jig *
 00026 ; * 17 Words - calibration look-up table (16 bytes of data) *
 00027 ; * 13 Words - Test Code to generate Calibration Constants *
 00028 ; * RAM memory: *
 00029 ; * 64 Bytes - Store up to 64 bytes of calibration constant *
 00030 ; * 9 Bytes - Store 9 bytes of temp variables (reused) *
 00031 ;
 ;**
 00032
 00033 list p=16C58A
 00034 include <p16C5x.inc>
 00001 LIST
 00002 ; P16C5X.INC Standard Hdr File, Version 3.30 Microchip Technology, Inc.
 00224 LIST
0FFF 0FF9 00035 __CONFIG _CP_OFF&_WDT_OFF&_XT_OSC
 00036
 00037 ; ************************************
 00038 ; * Port A (RA0-RA4) bit definitions *
 00039 ; ************************************
 00040 ; No PORT A pins are used in this design
 00041
 00042 ; ************************************
 00043 ; * Port B (RB0-RB7) bit definitions *
 00044 ; ************************************
 00000006 00045 ISPCLOCK EQU 6 ; Clock line for ISP and parameter comm
 00000007 00046 ISPDATA EQU 7 ; Data line for ISP and parameter comm
 00000005 00047 VPPON EQU 5 ; Apply +13V VPP voltage to MCLR (test mode)
 00000004 00048 GNDON EQU 4 ; Apply +0V (gnd) voltage to MCLR (reset)
 00000003 00049 SEROUT EQU 3 ; Optional RS-232 TX output (needs 12V driver)
 00000002 00050 DONELED EQU 2 ; Turns on LED when done sucessfully program
 00000001 00051 WORKLED EQU 1 ; On during programming, off when done
 00052 ; RB0 is not used in this design
 00053
apMMSRS_Jé~ÖÉ=QJS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
 00054 ; ***
 00055 ; * RAM register definition: *
 00056 ; * 07h - 0Fh - used for internal counters, vars *
 00057 ; * 10h - 7Fh - 64 bytes for cal param storage *
 00058 ; ***
 00059 ; ***
 00060 ; *** The following VARS are used during ISP programming:
 00061 ; ***
 00000007 00062 HIADDR EQU 07h ; High address of CAL params to be stored
 00000008 00063 LOADDR EQU 08h ; Low address of CAL params to be stored
 00000007 00064 HIDATA EQU 07h ; High byte of data to be sent via ISP
 00000008 00065 LODATA EQU 08h ; Low byte of data to be sent via ISP
 00000009 00066 HIBYTE EQU 09h ; High byte of data received via ISP
 0000000A 00067 LOBYTE EQU 0Ah ; Low byte of data received via ISP
 0000000B 00068 PULSECNT EQU 0Bh ; Number of times PIC has been pulse programmed
 0000000C 00069 TEMPCOUNT EQU 0Ch ; TEMP var used in counters
 0000000D 00070 TEMP EQU 0Dh ; TEMP var used throughout program
 00071 ; ***
 00072 ; *** The following VARS are used to receive and store CAL params:
 00073 ; ***
 00000007 00074 COUNT EQU 07h ; Counter var used to receive cal params
 00000008 00075 TEMP1 EQU 08h ; TEMP var used for RS-232 comm
 00000009 00076 DATAREG EQU 09h ; Data register used for RS-232 comm
 0000000A 00077 CSUMTOTAL EQU 0Ah ; Running total of checksum (addr + data)
 0000000B 00078 TIMEHIGH EQU 0Bh ; Count how long CLOCK line is high
 0000000C 00079 TIMELOW EQU 0Ch ; Count how long CLOCK line is low
 0000000E 00080 ADDRPTR EQU 0Eh ; Pointer to next byte of CAL storage
 0000000F 00081 BYTECOUNT EQU 0Fh ; Number of CAL bytes received
 00082
 00083 ; *************************************
 00084 ; * Various constants used in program *
 00085 ; *************************************
 00000001 00086 DATISPOUT EQU b’00000001’ ; tris settings for ISP data out
 00000081 00087 DATISPIN EQU b’10000001’ ; tris settings for ISP data in
 00000006 00088 CMDISPCNT EQU 6 ; Number of bits for ISP command
 00000010 00089 STARTCALBYTE EQU 10h ; Address in RAM where CAL byte data stored
 00000007 00090 VFYYES EQU PA2 ; Flag bit enables verification (STATUS)
 00000006 00091 CMDISPINCRADDR EQU b’00000110’ ; ISP Pattern to increment address
 00000008 00092 CMDISPPGMSTART EQU b’00001000’ ; ISP Pattern to start programming
 0000000E 00093 CMDISPPGMEND EQU b’00001110’ ; ISP Pattern to end programming
 00000002 00094 CMDISPLOAD EQU b’00000010’ ; ISP Pattern to load data for program
 00000004 00095 CMDISPREAD EQU b’00000100’ ; ISP Pattern to read data for verify
 00000034 00096 UPPER6BITS EQU 034h ; Upper 6 bits for retlw instruction
 00097
 00098 ; *************************************
 00099 ; * delaybit macro *
 00100 ; * Delays for 104 uS (at 4 Mhz clock)*
 00101 ; * for 9600 baud communications *
 00102 ; * RAM used: COUNT *
 00103 ; *************************************
 00104 delaybit macro
 00105 local dlylabels
 00106 ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
 00107 ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
 00108 movlw .31 ; place 31 decimal literal into count
 00109 movwf COUNT ; Initialize COUNT with loop count
 00110 nop ; Add one cycle delay
 00111 dlylabels
 00112 decfsz COUNT,F ; Decrement count until done
 00113 goto dlylabels ; Not done delaying - go back!
 00114 ENDM ; Done with Macro
 00115
 00116 ; **
 00117 ; * addrtofsr macro *
 00118 ; * Converts logical, continuous address 10h-4Fh *
 00119 ; * to FSR address as follows for access to (4) *
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJT

AN656
 00120 ; * banks of file registers in PIC16C58: *
 00121 ; * Logical Address FSR Value *
 00122 ; * 10h-1Fh 10h-1Fh *
 00123 ; * 20h-2Fh 30h-3Fh *
 00124 ; * 30h-3Fh 50h-5Fh *
 00125 ; * 40h-4Fh 70h-7Fh *
 00126 ; * Variable Passed: Logical Address *
 00127 ; * RAM used: FSR *
 00128 ; * W *
 00129 ; **
 00130 addrtofsr macro TESTADDR
 00131 movlw STARTCALBYTE ; Place base address into W
 00132 subwf TESTADDR,w ; Offset by STARTCALBYTE
 00133 movwf FSR ; Place into FSR
 00134 btfsc FSR,5 ; Shift bits 4,5 to 5,6
 00135 bsf FSR,6
 00136 bcf FSR,5
 00137 btfsc FSR,4
 00138 bsf FSR,5
 00139 bsf FSR,4
 00140 endm
 00141
 00142
 00143 ; **************************************
 00144 ; * The PC starts at the END of memory *
 00145 ; **************************************
07FF 00146 ORG 7FFh
Message[306]: Crossing page boundary -- ensure page bits are set.
07FF 0A00 00147 goto start
 00148
 00149 ; **************************************
 00150 ; * Start of CAL param read routine *
 00151 ; **************************************
0000 00152 ORG 0h
0000 00153 start
0000 0C0A 00154 movlw b’00001010’ ; Serial OFF, LEDS OFF, VPP OFF
0001 0026 00155 movwf PORTB ; Place “0” into port b latch register
0002 0CC1 00156 movlw b’11000001’ ; RB7;:RB6, RB0 set to inputs
0003 0006 00157 tris PORTB ; Move to tris registers
0004 0040 00158 clrw ; Place 0 into W
0005 0065 00159 clrf PORTA ; Place all ZERO into latch
0006 0005 00160 tris PORTA ; Make all pins outputs to be safe..
0007 0586 00161 bsf PORTB,GNDON ; TEST ONLY-RESET PIC-NOT NEEDED IN REAL DESIGN!
0008 00162 clearram
0008 0C10 00163 movlw 010h ; Place start of buffer into W
0009 0027 00164 movwf COUNT ; Use count for RAM pointer
000A 00165 loopclrram
 00166 addrtofsr COUNT ; Set up FSR
000A 0C10 M movlw STARTCALBYTE ; Place base address into W
000B 0087 M subwf COUNT,w ; Offset by STARTCALBYTE
000C 0024 M movwf FSR ; Place into FSR
000D 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
000E 05C4 M bsf FSR,6
000F 04A4 M bcf FSR,5
0010 0684 M btfsc FSR,4
0011 05A4 M bsf FSR,5
0012 0584 M bsf FSR,4
0013 0060 00167 clrf INDF ; Clear buffer value
0014 02A7 00168 incf COUNT,F ; Move to next reg
0015 0C50 00169 movlw 050h ; Move end of buffer addr to W
0016 0087 00170 subwf COUNT,W ; Check if at last MEM
0017 0743 00171 btfss STATUS,Z ; Skip when at end of counter
0018 0A0A 00172 goto loopclrram ; go back to next location
0019 0486 00173 bcf PORTB,GNDON ; TEST ONLY-LET IT GO-NOT NEEDED IN REAL DESIGN!
001A 00174 calget
001A 006A 00175 clrf CSUMTOTAL ; Clear checksum total byte
apMMSRS_Jé~ÖÉ=QJU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
001B 0069 00176 clrf DATAREG ; Clear out data receive register
001C 0C10 00177 movlw STARTCALBYTE ; Place RAM start address of first cal byte
001D 002E 00178 movwf ADDRPTR ; Place this into ADDRPTR
001E 00179 waitclockpulse
001E 07C6 00180 btfss PORTB,ISPCLOCK ; Wait for CLOCK high pulse - skip when high
001F 0A1E 00181 goto waitclockpulse ; CLOCK is low - go back and wait!
0020 00182 loopcal
0020 0C08 00183 movlw .8 ; Place 8 into W (8 bits/byte)
0021 0027 00184 movwf COUNT ; set up counter register to count bits
0022 00185 loopsendcal
0022 006B 00186 clrf TIMEHIGH ; Clear timeout counter for high pulse
0023 006C 00187 clrf TIMELOW ; Clear timeout counter for low pulse
0024 00188 waitclkhi
0024 06C6 00189 btfsc PORTB,ISPCLOCK ; Wait for CLOCK high - skip if it is low
0025 0A29 00190 goto waitclklo ; Jump to wait for CLOCK low state
0026 02EB 00191 decfsz TIMEHIGH,F ; Decrement counter - skip if timeout
0027 0A24 00192 goto waitclkhi ; Jump back and wait for CLOCK high again
0028 0A47 00193 goto timeout ; Timed out waiting for high - check data!
0029 00194 waitclklo
0029 07C6 00195 btfss PORTB,ISPCLOCK ; Wait for CLOCK low - skip if it is high
002A 0A2E 00196 goto clockok ; Got a high to low pulse - jump to clockok
002B 02EC 00197 decfsz TIMELOW,F ; Decrement counter - skip if timeout
002C 0A29 00198 goto waitclklo ; Jump back and wait for CLOCK low again
002D 0A47 00199 goto timeout ; Timed out waiting for low - check data!
002E 00200 clockok
002E 0C08 00201 movlw .8 ; Place initial count value into W
002F 0087 00202 subwf COUNT,W ; Subtract from count, place into W
0030 0743 00203 btfss STATUS,Z ; Skip if we are at count 8 (first value)
0031 0A34 00204 goto skipcsumadd ; Skip checksum add if any other count value
0032 0209 00205 movf DATAREG,W ; Place last byte received into W
0033 01EA 00206 addwf CSUMTOTAL,F ; Add to checksum
0034 00207 skipcsumadd
0034 0503 00208 bsf STATUS,C ; Assume data bit is high
0035 07E6 00209 btfss PORTB,ISPDATA ; Skip if the data bit was high
0036 0403 00210 bcf STATUS,C ; Set data bit to low
0037 0369 00211 rlf DATAREG,F ; Rotate next bit into DATAREG
0038 02E7 00212 decfsz COUNT,F ; Skip after 8 bits
0039 0A22 00213 goto loopsendcal ; Jump back and send next bit
 00214 addrtofsr ADDRPTR ; Convert pointer address to FSR
003A 0C10 M movlw STARTCALBYTE ; Place base address into W
003B 008E M subwf ADDRPTR,w ; Offset by STARTCALBYTE
003C 0024 M movwf FSR ; Place into FSR
003D 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
003E 05C4 M bsf FSR,6
003F 04A4 M bcf FSR,5
0040 0684 M btfsc FSR,4
0041 05A4 M bsf FSR,5
0042 0584 M bsf FSR,4
0043 0209 00215 movf DATAREG,W ; Place received byte into W
0044 0020 00216 movwf INDF ; Move recv’d byte into CAL buffer location
0045 02AE 00217 incf ADDRPTR,F ; Move to the next cal byte
0046 0A20 00218 goto loopcal ; Go back for next byte
0047 00219 timeout
0047 0C14 00220 movlw STARTCALBYTE+4 ; check if we received (4) params
0048 008E 00221 subwf ADDRPTR,W ; Move current address pointer to W
0049 0703 00222 btfss STATUS,C ; Skip if we have at least (4)
004A 0A93 00223 goto sendnoise ; not enough params - print and RESET!
004B 0200 00224 movf INDF,W ; Move received checksum into W
004C 00AA 00225 subwf CSUMTOTAL,F ; Subtract received Checksum from calc’d checksum
004D 0743 00226 btfss STATUS,Z ; Skip if CSUM OK
004E 0A9F 00227 goto sendcsumbad ; Checksum bad - print and RESET!
004F 00228 csumok
004F 0426 00229 bcf PORTB,WORKLED ; Turn on WORK LED
0050 0C10 00230 movlw STARTCALBYTE ; Place start pointer into W
0051 008E 00231 subwf ADDRPTR,W ; Subtract from current address
0052 002F 00232 movwf BYTECOUNT ; Place into number of bytes into BYTECOUNT
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJV

AN656
0053 002B 00233 movwf TIMEHIGH ; TEMP store into timehigh reg
0054 0C10 00234 movlw STARTCALBYTE ; Place start address into W
0055 002E 00235 movwf ADDRPTR ; Set up address pointer
0056 00236 loopprintnums
 00237 addrtofsr ADDRPTR ; Set up FSR
0056 0C10 M movlw STARTCALBYTE ; Place base address into W
0057 008E M subwf ADDRPTR,w ; Offset by STARTCALBYTE
0058 0024 M movwf FSR ; Place into FSR
0059 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
005A 05C4 M bsf FSR,6
005B 04A4 M bcf FSR,5
005C 0684 M btfsc FSR,4
005D 05A4 M bsf FSR,5
005E 0584 M bsf FSR,4
005F 0380 00238 swapf INDF,W ; Place received char into W
0060 0E0F 00239 andlw 0Fh ; Strip off upper digits
0061 002D 00240 movwf TEMP ; Place into TEMP
0062 0C0A 00241 movlw .10 ; Place .10 into W
0063 00AD 00242 subwf TEMP,F ; Subtract 10 from TEMP
0064 0603 00243 btfsc STATUS,C ; Skip if TEMP is less than 9
0065 0A6D 00244 goto printhiletter ; Greater than 9 - print letter instead
0066 00245 printhinumber
0066 0380 00246 swapf INDF,W ; Place received char into W
0067 0E0F 00247 andlw 0Fh ; Strip off upper digits
0068 002D 00248 movwf TEMP ; Place into TEMP
0069 0C30 00249 movlw ‘0’ ; Place ASCII ‘0’ into W
006A 01CD 00250 addwf TEMP,w ; Add to TEMP, place into W
006B 09AE 00251 call putchar ; Send out char
006C 0A73 00252 goto printlo ; Jump to print next char
006D 00253 printhiletter
006D 0380 00254 swapf INDF,W ; Place received char into W
006E 0E0F 00255 andlw 0Fh ; Strip off upper digits
006F 002D 00256 movwf TEMP ; Place into TEMP
0070 0C37 00257 movlw ‘A’-.10 ; Place ASCII ‘A’ into W
0071 01CD 00258 addwf TEMP,w ; Add to TEMP, place into W
0072 09AE 00259 call putchar ; send out char
0073 00260 printlo
0073 0200 00261 movf INDF,W ; Place received char into W
0074 0E0F 00262 andlw 0Fh ; Strip off upper digits
0075 002D 00263 movwf TEMP ; Place into TEMP
0076 0C0A 00264 movlw .10 ; Place .10 into W
0077 00AD 00265 subwf TEMP,F ; Subtract 10 from TEMP
0078 0603 00266 btfsc STATUS,C ; Skip if TEMP is less than 9
0079 0A81 00267 goto printloletter ; Greater than 9 - print letter instead
007A 00268 printlonumber
007A 0200 00269 movf INDF,W ; Place received char into W
007B 0E0F 00270 andlw 0Fh ; Strip off upper digits
007C 002D 00271 movwf TEMP ; Place into TEMP
007D 0C30 00272 movlw ‘0’ ; Place ASCII ‘0’ into W
007E 01CD 00273 addwf TEMP,w ; Add to TEMP, place into W
007F 09AE 00274 call putchar ; send out char
0080 0A87 00275 goto printnext ; jump to print next char
0081 00276 printloletter
0081 0200 00277 movf INDF,W ; Place received char into W
0082 0E0F 00278 andlw 0Fh ; Strip off upper digits
0083 002D 00279 movwf TEMP ; Place into TEMP
0084 0C37 00280 movlw ‘A’-.10 ; Place ASCII ‘A’ into W
0085 01CD 00281 addwf TEMP,w ; Add to TEMP, place into W
0086 09AE 00282 call putchar ; send out char
0087 00283 printnext
0087 0C7C 00284 movlw ‘|’ ; Place ASCII ‘|’ into W
0088 09AE 00285 call putchar ; Send out character
0089 028E 00286 incf ADDRPTR,W ; Go to next buffer value
008A 0E0F 00287 andlw 0Fh ; And with F

008B 0643 00288 btfsc STATUS,Z ; Skip if this is NOT multiple of 16
apMMSRS_Jé~ÖÉ=QJNM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
008C 09A9 00289 call printcrlf ; Print CR and LF every 16 chars
008D 02AE 00290 incf ADDRPTR,F ; go to next address
008E 02EF 00291 decfsz BYTECOUNT,F ; Skip after last byte
008F 0A56 00292 goto loopprintnums ; Go back and print next char
0090 09A9 00293 call printcrlf ; Print CR and LF
0091 05A3 00294 bsf STATUS,PA0 ; Set page bit to page 1
Message[306]: Crossing page boundary -- ensure page bits are set.
0092 0A6B 00295 goto programpartisp ; Go to program part through ISP
0093 00296 sendnoise
0093 0C4E 00297 movlw ‘N’ ; Place ‘N’ into W
0094 09AE 00298 call putchar ; Send char in W to terminal
0095 0C4F 00299 movlw ‘O’ ; Place ‘O’ into W
0096 09AE 00300 call putchar ; Send char in W to terminal
0097 0C49 00301 movlw ‘I’ ; Place ‘I’ into W
0098 09AE 00302 call putchar ; Send char in W to terminal
0099 0C53 00303 movlw ‘S’ ; Place ‘S’ into W
009A 09AE 00304 call putchar ; Send char in W to terminal
009B 0C45 00305 movlw ‘E’ ; Place ‘E’ into W
009C 09AE 00306 call putchar ; Send char in W to terminal
009D 09A9 00307 call printcrlf ; Print CR and LF
009E 0A1A 00308 goto calget ; RESET!
009F 00309 sendcsumbad
009F 0C43 00310 movlw ‘C’ ; Place ‘C’ into W
00A0 09AE 00311 call putchar ; Send char in W to terminal
00A1 0C53 00312 movlw ‘S’ ; Place ‘S’ into W
00A2 09AE 00313 call putchar ; Send char in W to terminal
00A3 0C55 00314 movlw ‘U’ ; Place ‘U’ into W
00A4 09AE 00315 call putchar ; Send char in W to terminal
00A5 0C4D 00316 movlw ‘M’ ; Place ‘M’ into W
00A6 09AE 00317 call putchar ; Send char in W to terminal
00A7 09A9 00318 call printcrlf ; Print CR and LF
00A8 0A1A 00319 goto calget ; RESET!
 00320
 00321 ; **
 00322 ; * printcrlf *
 00323 ; * Sends char .13 (Carrage Return) and *
 00324 ; * char .10 (Line Feed) to RS-232 port *
 00325 ; * by calling putchar. *
 00326 ; * RAM used: W *
 00327 ; **
00A9 00328 printcrlf
00A9 0C0D 00329 movlw .13 ; Value for CR placed into W
00AA 09AE 00330 call putchar ; Send char in W to terminal
00AB 0C0A 00331 movlw .10 ; Value for LF placed into W
00AC 09AE 00332 call putchar ; Send char in W to terminal
00AD 0800 00333 retlw 0 ; Done - return!
 00334
 00335 ; **
 00336 ; * putchar *
 00337 ; * Print out the character stored in W *
 00338 ; * by toggling the data to the RS-232 *
 00339 ; * output pin in software. *
 00340 ; * RAM used: W,DATAREG,TEMP1 *
 00341 ; **
00AE 00342 putchar
00AE 0029 00343 movwf DATAREG ; Place character into DATAREG
00AF 0C09 00344 movlw 09h ; Place total number of bits into W
00B0 0028 00345 movwf TEMP1 ; Init TEMP1 for bit counter
00B1 0403 00346 bcf STATUS,C ; Set carry to send start bit
00B2 0AB4 00347 goto putloop1 ; Send out start bit
00B3 00348 putloop
00B3 0329 00349 rrf DATAREG,F ; Place next bit into carry
00B4 00350 putloop1
00B4 0703 00351 btfss STATUS,C ; Skip if carry was set
00B5 0466 00352 bcf PORTB,SEROUT ; Clear RS-232 serial output bit
00B6 0603 00353 btfsc STATUS,C ; Skip if carry was clear
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJNN

AN656
00B7 0566 00354 bsf PORTB,SEROUT ; Set RS-232 serial output bit
 00355 delaybit ; Delay for one bit time
 0000 M local dlylabels
 M ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
 M ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
00B8 0C1F M movlw .31 ; place 31 decimal literal into count
00B9 0027 M movwf COUNT ; Initialize COUNT with loop count
00BA 0000 M nop ; Add one cycle delay
00BB M dlylabels
00BB 02E7 M decfsz COUNT,F ; Decrement count until done
00BC 0ABB M goto dlylabels ; Not done delaying - go back!
00BD 02E8 00356 decfsz TEMP1,F ; Decrement bit counter, skip when done!
00BE 0AB3 00357 goto putloop ; Jump back and send next bit
00BF 0566 00358 bsf PORTB,SEROUT ; Send out stop bit
 00359 delaybit ; delay for stop bit
 0000 M local dlylabels
 M ; 9600 baud, 8 bit, no parity, 104 us per bit, 52 uS per half bit
 M ; (8) shift/usage + (2) setup + (1) nop + (3 * 31) literal = (104) 4Mhz
00C0 0C1F M movlw .31 ; place 31 decimal literal into count
00C1 0027 M movwf COUNT ; Initialize COUNT with loop count
00C2 0000 M nop ; Add one cycle delay
00C3 M dlylabels
00C3 02E7 M decfsz COUNT,F ; Decrement count until done
00C4 0AC3 M goto dlylabels ; Not done delaying - go back!
00C5 0800 00360 retlw 0 ; Done - RETURN
 00361
 00362 ; ***
 00363 ; * ISP routines from PICSTART-16C *
 00364 ; * Converted from PIC17C42 to PIC16C5X code by John Day *
 00365 ; * Originially written by Jim Pepping *
 00366 ; ***
0200 00367 ORG 200 ; ISP routines stored on page 1
 00368
 00369 ; ***
 00370 ; * poweroffisp *
 00371 ; * Power off application PIC - turn off VPP and reset device after *
 00372 ; * programming pass is complete *
 00373 ; ***
0200 00374 poweroffisp
0200 04A6 00375 bcf PORTB,VPPON ; Turn off VPP 13 volts
0201 0586 00376 bsf PORTB,GNDON ; Apply 0 V to MCLR to reset PIC
0202 0CC1 00377 movlw b’11000001’ ; RB6,7 set to inputs
0203 0006 00378 tris PORTB ; Move to tris registers
0204 0486 00379 bcf PORTB,GNDON ; Allow MCLR to go back to 5 volts, deassert reset
0205 0526 00380 bsf PORTB,WORKLED ; Turn off WORK LED
0206 0800 00381 retlw 0 ; Done so return!
 00382
 00383 ; ***
 00384 ; * testmodeisp *
 00385 ; * Apply VPP voltage to place application PIC into test mode. *
 00386 ; * this enables ISP programming to proceed *
 00387 ; * RAM used: TEMP *
 00388 ; ***
0207 00389 testmodeisp
0207 0C08 00390 movlw b’00001000’ ; Serial OFF, LEDS OFF, VPP OFF
0208 0026 00391 movwf PORTB ; Place “0” into port b latch register
0209 04A6 00392 bcf PORTB,VPPON ; Turn off VPP just in case!
020A 0586 00393 bsf PORTB,GNDON ; Apply 0 volts to MCLR
020B 0C01 00394 movlw b’00000001’ ; RB6,7 set to outputs
020C 0006 00395 tris PORTB ; Move to tris registers
020D 0206 00396 movf PORTB,W ; Place PORT B state into W
020E 002D 00397 movwf TEMP ; Move state to TEMP
020F 048D 00398 bcf TEMP,4 ; Turn off MCLR GND
0210 05AD 00399 bsf TEMP,5 ; Turn on VPP voltage
0211 020D 00400 movf TEMP,W ; Place TEMP into W
0212 0026 00401 movwf PORTB ; Turn OFF GND and ON VPP
apMMSRS_Jé~ÖÉ=QJNO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
0213 0546 00402 bsf PORTB,DONELED ; Turn ON GREEN LED
0214 0800 00403 retlw 0 ; Done so return!
 00404
 00405 ; ***
 00406 ; * p16cispout *
 00407 ; * Send 14-bit data word to application PIC for writing this data *
 00408 ; * to it’s program memory. The data to be sent is stored in both *
 00409 ; * HIBYTE (6 MSBs only) and LOBYTE. *
 00410 ; * RAM used: TEMP, W, HIBYTE (inputs), LOBYTE (inputs) *
 00411 ; ***
0215 00412 P16cispout
0215 0C0E 00413 movlw .14 ; Place 14 into W for bit counter
0216 002D 00414 movwf TEMP ; Use TEMP as bit counter
0217 04C6 00415 bcf PORTB,ISPCLOCK ; Clear CLOCK line
0218 04E6 00416 bcf PORTB,ISPDATA ; Clear DATA line
0219 0C01 00417 movlw DATISPOUT ; Place tris value for data output
021A 0006 00418 tris PORTB ; Set tris latch as data output
021B 04E6 00419 bcf PORTB,ISPDATA ; Send a start bit (0)
021C 05C6 00420 bsf PORTB,ISPCLOCK ; Set CLOCK output
021D 04C6 00421 bcf PORTB,ISPCLOCK ; Clear CLOCK output (clock start bit)
021E 00422 P16cispoutloop
021E 0403 00423 bcf STATUS,C ; Clear carry bit to start clean
021F 04E6 00424 bcf PORTB,ISPDATA ; Clear DATA bit to start (assume 0)
0220 0329 00425 rrf HIBYTE,F ; Rotate HIBYTE output
0221 032A 00426 rrf LOBYTE,F ; Rotate LOBYTE output
0222 0603 00427 btfsc STATUS,C ; Skip if data bit is zero
0223 05E6 00428 bsf PORTB,ISPDATA ; Set DATA line to send a one
0224 05C6 00429 bsf PORTB,ISPCLOCK ; Set CLOCK output
0225 04C6 00430 bcf PORTB,ISPCLOCK ; Clear CLOCK output (clock bit)
0226 02ED 00431 decfsz TEMP,F ; Decrement bit counter, skip when done
0227 0A1E 00432 goto P16cispoutloop ; Jump back and send next bit
0228 04E6 00433 bcf PORTB,ISPDATA ; Send a stop bit (0)
0229 05C6 00434 bsf PORTB,ISPCLOCK ; Set CLOCK output
022A 04C6 00435 bcf PORTB,ISPCLOCK ; Clear CLOCK output (clock stop bit)
022B 0800 00436 retlw 0 ; Done so return!
 00437
 00438 ; ***
 00439 ; * p16cispin *
 00440 ; * Receive 14-bit data word from application PIC for reading this *
 00441 ; * data from it’s program memory. The data received is stored in *
 00442 ; * both HIBYTE (6 MSBs only) and LOBYTE. *
 00443 ; * RAM used: TEMP, W, HIBYTE (output), LOBYTE (output) *
 00444 ; ***
022C 00445 P16cispin
022C 0C0E 00446 movlw .14 ; Place 14 data bit count value into W
022D 002D 00447 movwf TEMP ; Init TEMP and use for bit counter
022E 0069 00448 clrf HIBYTE ; Clear recieved HIBYTE register
022F 006A 00449 clrf LOBYTE ; Clear recieved LOBYTE register
0230 0403 00450 bcf STATUS,C ; Clear carry bit to start clean
0231 04C6 00451 bcf PORTB,ISPCLOCK ; Clear CLOCK output
0232 04E6 00452 bcf PORTB,ISPDATA ; Clear DATA output
0233 0C81 00453 movlw DATISPIN ; Place tris value for data input into W
0234 0006 00454 tris PORTB ; Set up tris latch for data input
0235 05C6 00455 bsf PORTB,ISPCLOCK ; Send a single clock to start things going
0236 04C6 00456 bcf PORTB,ISPCLOCK ; Clear CLOCK to start receive
0237 00457 P16cispinloop
0237 05C6 00458 bsf PORTB,ISPCLOCK ; Set CLOCK bit
0238 0000 00459 nop ; Wait one cycle
0239 0403 00460 bcf STATUS,C ; Clear carry bit, assume 0 read
023A 06E6 00461 btfsc PORTB,ISPDATA ; Check the data, skip if it was zero
023B 0503 00462 bsf STATUS,C ; Set carry bit if data was one
023C 0329 00463 rrf HIBYTE,F ; Move recevied bit into HIBYTE
023D 032A 00464 rrf LOBYTE,F ; Update LOBYTE
023E 04C6 00465 bcf PORTB,ISPCLOCK ; Clear CLOCK line
023F 0000 00466 nop ; Wait one cycle
0240 0000 00467 nop ; Wait one cycle
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJNP

AN656
0241 02ED 00468 decfsz TEMP,F ; Decrement bit counter, skip when zero
0242 0A37 00469 goto P16cispinloop ; Jump back and receive next bit
0243 05C6 00470 bsf PORTB,ISPCLOCK ; Clock a stop bit (0)
0244 0000 00471 nop ; Wait one cycle
0245 04C6 00472 bcf PORTB,ISPCLOCK ; Clear CLOCK to send bit
0246 0000 00473 nop ; Wait one cycle
0247 0403 00474 bcf STATUS,C ; Clear carry bit
0248 0329 00475 rrf HIBYTE,F ; Update HIBYTE with the data
0249 032A 00476 rrf LOBYTE,F ; Update LOBYTE
024A 0403 00477 bcf STATUS,C ; Clear carry bit
024B 0329 00478 rrf HIBYTE,F ; Update HIBYTE with the data
024C 032A 00479 rrf LOBYTE,F ; Update LOBYTE with the data
024D 04C6 00480 bcf PORTB,ISPCLOCK ; Clear CLOCK line
024E 04E6 00481 bcf PORTB,ISPDATA ; Clear DATA line
024F 0C01 00482 movlw DATISPOUT ; Place tris value for data output into W
0250 0006 00483 tris PORTB ; Set tris to data output
0251 0800 00484 retlw 0 ; Done so RETURN!
 00485
 00486 ; ***
 00487 ; * commandisp *
 00488 ; * Send 6-bit ISP command to application PIC. The command is sent *
 00489 ; * in the W register and later stored in LOBYTE for shifting. *
 00490 ; * RAM used: LOBYTE, W, TEMP *
 00491 ; ***
0252 00492 commandisp
0252 002A 00493 movwf LOBYTE ; Place command into LOBYTE
0253 0C06 00494 movlw CMDISPCNT ; Place number of command bits into W
0254 002D 00495 movwf TEMP ; Use TEMP as command bit counter
0255 04E6 00496 bcf PORTB,ISPDATA ; Clear DATA line
0256 04C6 00497 bcf PORTB,ISPCLOCK ; Clear CLOCK line
0257 0C01 00498 movlw DATISPOUT ; Place tris value for data output into W
0258 0006 00499 tris PORTB ; Set tris to data output
0259 00500 P16cispcmmdoutloop
0259 0403 00501 bcf STATUS,C ; Clear carry bit to start clean
025A 04E6 00502 bcf PORTB,ISPDATA ; Clear the DATA line to start
025B 032A 00503 rrf LOBYTE,F ; Update carry with next CMD bit to send
025C 0603 00504 btfsc STATUS,C ; Skip if bit is supposed to be 0
025D 05E6 00505 bsf PORTB,ISPDATA ; Command bit was a one - set DATA to one
025E 05C6 00506 bsf PORTB,ISPCLOCK ; Set CLOCK line to clock the data
025F 0000 00507 nop ; Wait one cycle
0260 04C6 00508 bcf PORTB,ISPCLOCK ; Clear CLOCK line to clock data
0261 02ED 00509 decfsz TEMP,F ; Decement bit counter TEMP, skip when done
0262 0A59 00510 goto P16cispcmmdoutloop ; Jump back and send next cmd bit
0263 0000 00511 nop ; Wait one cycle
0264 04E6 00512 bcf PORTB,ISPDATA ; Clear DATA line
0265 04C6 00513 bcf PORTB,ISPCLOCK ; Clear CLOCK line
0266 0C81 00514 movlw DATISPIN ; Place tris value for data input into W
0267 0006 00515 tris PORTB ; set as input to avoid any contention
0268 0000 00516 nop ; Wait one cycle
0269 0000 00517 nop ; Wait one cycle
026A 0800 00518 retlw 0 ; Done - return!
 00519
 00520 ; **
 00521 ; * programpartisp *
 00522 ; * Main ISP programming loop. Reads data starting at STARTCALBYTE *
 00523 ; * and calls programming subroutines to program and verify this *
 00524 ; * data into the application PIC. *
 00525 ; * RAM used: LOADDR, HIADDR, LODATA, HIDATA, FSR, LOBYTE, HIBYTE*
 00526 ; **
026B 00527 programpartisp
026B 0907 00528 call testmodeisp ; Place PIC into test/program mode
026C 0064 00529 clrf FSR ; Point to bank 0
026D 0210 00530 movf STARTCALBYTE,W ; Upper order address of data to be stored into W
026E 0027 00531 movwf HIADDR ; place into counter
026F 0211 00532 movf STARTCALBYTE+1,W ; Lower order address byte of data to be stored
0270 0028 00533 movwf LOADDR ; place into counter
apMMSRS_Jé~ÖÉ=QJNQ =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
0271 00E8 00534 decf LOADDR,F ; Subtract one from loop constant
0272 02A7 00535 incf HIADDR,F ; Add one for loop constant
0273 00536 programsetptr
0273 0C06 00537 movlw CMDISPINCRADDR ; Increment address command load into W
0274 0952 00538 call commandisp ; Send command to PIC
0275 02E8 00539 decfsz LOADDR,F ; Decrement lower address
0276 0A73 00540 goto programsetptr ; Go back again
0277 02E7 00541 decfsz HIADDR,F ; Decrement high address
0278 0A73 00542 goto programsetptr ; Go back again
0279 0C03 00543 movlw .3 ; Place start pointer into W, offset address
027A 008B 00544 subwf TIMEHIGH,W ; Restore byte count into W
027B 002F 00545 movwf BYTECOUNT ; Place into byte counter
027C 0C12 00546 movlw STARTCALBYTE+2 ; Place start of REAL DATA address into W
027D 002E 00547 movwf ADDRPTR ; Update pointer
027E 00548 programisploop
027E 0C34 00549 movlw UPPER6BITS ; retlw instruction opcode placed into W
027F 0027 00550 movwf HIDATA ; Set up upper bits of program word
 00551 addrtofsr ADDRPTR ; Set up FSR to point to next value
0280 0C10 M movlw STARTCALBYTE ; Place base address into W
0281 008E M subwf ADDRPTR,w ; Offset by STARTCALBYTE
0282 0024 M movwf FSR ; Place into FSR
0283 06A4 M btfsc FSR,5 ; Shift bits 4,5 to 5,6
0284 05C4 M bsf FSR,6
0285 04A4 M bcf FSR,5
0286 0684 M btfsc FSR,4
0287 05A4 M bsf FSR,5
0288 0584 M bsf FSR,4
0289 0200 00552 movf INDF,W ; Place next cal param into W
028A 0028 00553 movwf LODATA ; Move it out to LODATA
028B 0208 00554 movf LODATA,W ; Place LODATA into LOBYTE
028C 002A 00555 movwf LOBYTE ;
028D 0207 00556 movf HIDATA,W ; Place HIDATA into HIBYTE
028E 0029 00557 movwf HIBYTE ;
028F 006B 00558 clrf PULSECNT ; Clear pulse counter
0290 00559 pgmispcntloop
0290 05E3 00560 bsf STATUS,VFYYES ; Set verify flag
0291 09B1 00561 call pgmvfyisp ; Program and verify this byte
0292 02AB 00562 incf PULSECNT,F ; Increment pulse counter
0293 0C19 00563 movlw .25 ; Place 25 count into W
0294 008B 00564 subwf PULSECNT,w ; Subtract pulse count from 25
0295 0643 00565 btfsc STATUS,Z ; Skip if NOT 25 pulse counts
0296 0AA9 00566 goto pgmispfail ; Jump to program failed - only try 25 times
0297 0209 00567 movf HIBYTE,w ; Subtract programmed and read data
0298 0087 00568 subwf HIDATA,w
0299 0743 00569 btfss STATUS,Z ; Skip if programmed is OK
029A 0A90 00570 goto pgmispcntloop ; Miscompare - program it again!
029B 020A 00571 movf LOBYTE,w ; Subtract programmed and read data
029C 0088 00572 subwf LODATA,w
029D 0743 00573 btfss STATUS,Z ; Skip if programmed is OK
029E 0A90 00574 goto pgmispcntloop ; Miscompare - program it again!
029F 0040 00575 clrw ; Clear W reg
02A0 01CB 00576 addwf PULSECNT,W ; now do 3 times overprogramming pulses
02A1 01CB 00577 addwf PULSECNT,W
02A2 01CB 00578 addwf PULSECNT,W
02A3 002B 00579 movwf PULSECNT ; Add 3X pulsecount to pulsecount
02A4 00580 pgmisp3X
02A4 04E3 00581 bcf STATUS,VFYYES ; Clear verify flag
02A5 09B1 00582 call pgmvfyisp ; Program this byte
02A6 02EB 00583 decfsz PULSECNT,F ; Decrement pulse counter, skip when done
02A7 0AA4 00584 goto pgmisp3X ; Loop back and program again!
02A8 0AAA 00585 goto prgnextbyte ; Done - jump to program next byte!
02A9 00586 pgmispfail
02A9 0446 00587 bcf PORTB,DONELED ; Failure - clear green LED!
02AA 00588 prgnextbyte
02AA 0C06 00589 movlw CMDISPINCRADDR ; Increiment address command load into W
02AB 0952 00590 call commandisp ; Send command to PIC
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJNR

AN656
02AC 02AE 00591 incf ADDRPTR,F ; Increment pointer to next address
02AD 02EF 00592 decfsz BYTECOUNT,F ; See if we sent last byte
02AE 0A7E 00593 goto programisploop ; Jump back and send next byte
02AF 0900 00594 call poweroffisp ; Done - power off PIC and reset it!
02B0 00595 self
02B0 0AB0 00596 goto self ; Done with programming - wait here!
 00597
 00598
 00599
 00600 ; ***
 00601 ; * pgmvfyisp *
 00602 ; * Program and/or Veryify a word in program memory on the *
 00603 ; * application PIC. The data to be programmed is in HIDATA and *
 00604 ; * LODATA. *
 00605 ; * RAM used: HIBYTE, LOBYTE, HIDATA, LODATA, TEMP *
 00606 ; ***
02B1 00607 pgmvfyisp
02B1 00608 loadcisp
02B1 0C02 00609 movlw CMDISPLOAD ; Place load data command into W
02B2 0952 00610 call commandisp ; Send load data command to PIC
02B3 0000 00611 nop ; Wait one cycle
02B4 0000 00612 nop ; Wait one cycle
02B5 0000 00613 nop ; Wait one cycle
02B6 0208 00614 movf LODATA,w ; Place LODATA byte into W
02B7 002A 00615 movwf LOBYTE ; Move it to LOBYTE reg
02B8 0207 00616 movf HIDATA,w ; Place HIDATA byte into W
02B9 0029 00617 movwf HIBYTE ; Move it to HIBYTE reg
02BA 0915 00618 call P16cispout ; Send data to PIC
02BB 0C08 00619 movlw CMDISPPGMSTART ; Place start programming command into W
02BC 0952 00620 call commandisp ; Send start programming command to PIC
02BD 00621 delay100us
02BD 0C20 00622 movlw .32 ; Place 32 into W
02BE 0000 00623 nop ; Wait one cycle
02BF 002D 00624 movwf TEMP ; Move it to TEMP for delay counter
02C0 00625 loopprgm
02C0 02ED 00626 decfsz TEMP,F ; Decrement TEMP, skip when delay done
02C1 0AC0 00627 goto loopprgm ; Jump back and loop delay
02C2 0C0E 00628 movlw CMDISPPGMEND ; Place stop programming command into W
02C3 0952 00629 call commandisp ; Send end programming command to PIC
02C4 07E3 00630 btfss STATUS,VFYYES ; Skip if we are supposed to verify this time
02C5 0800 00631 retlw 0 ; Done - return!
02C6 0000 00632 nop ; Wait one cycle
02C7 00633 readcisp
02C7 0C04 00634 movlw CMDISPREAD ; Place read data command into W
02C8 0952 00635 call commandisp ; Send read data command to PIC
02C9 092C 00636 call P16cispin ; Read programmed data
02CA 0800 00637 retlw 0 ; Done - return!
 00638 END
apMMSRS_Jé~ÖÉ=QJNS =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
00C0 : XXXXXX---------- ---------------- ---------------- ----------------
0200 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0240 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0280 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
02C0 : XXXXXXXXXXX----- ---------------- ---------------- ----------------
07C0 : ---------------- ---------------- ---------------- ---------------X
0FC0 : ---------------- ---------------- ---------------- ---------------X

All other memory blocks unused.

Program Memory Words Used: 402
Program Memory Words Free: 1646

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 2 reported, 0 suppressed
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJNT

AN656
APPENDIX B:
MPASM 01.40.01 Intermediate ISPTEST.ASM 3-31-1997 10:55:57 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ; Filename: ISPTEST.ASM
 00002 ; **
 00003 ; * Author: John Day *
 00004 ; * Sr. Field Applications Engineer *
 00005 ; * Microchip Technology *
 00006 ; * Revision: 1.0 *
 00007 ; * Date August 25, 1995 *
 00008 ; * Part: PIC16CXX *
 00009 ; * Compiled using MPASM V1.40 *
 00010 ; **
 00011 ; * Include files: *
 00012 ; * P16CXX.ASM *
 00013 ; **
 00014 ; * Fuses: OSC: XT (4.0 Mhz xtal) *
 00015 ; * WDT: OFF *
 00016 ; * CP: OFF *
 00017 ; * PWRTE: OFF *
 00018 ; **
 00019 ; * This program is intended to be used as a code example to *
 00020 ; * show how to comunicate with a manufacturing test jig that *
 00021 ; * allows this PIC16CXX device to self program. The RB6 and RB7 *
 00022 ; * lines of this PIC16CXX device are used to clock the data from *
 00023 ; * this device to the test jig (running ISPPRGM.ASM). Once the *
 00024 ; * PIC16C58 running ISPPRGM in the test jig receives the data, *
 00025 ; * it places this device in test mode and programs these parameters. *
 00026 ; * The code with comments “TEST -“ is used to create some fakecalibration *
 00027 ; * parameters that are first written to addresses STARTCALBYTE through *
 00028 ; * ENDCALBYTE and later used to call the self-programming algorithm. *
 00029 ; * Replace this code with your parameter calculation procedure, *
 00030 ; * placing each parameter into the STARTCALBYTE to ENDCALBYTE *
 00031 ; * file register addresses (16 are used in this example). The address *
 00032 ; * “lookuptable” is used by the main code later on for the final lookup *
 00033 ; * table of calibration constants. 16 words are reserved for this lookup *
 00034 ; * table. *
 00035 ; **
 00036 ; * Program Memory: *
 00037 ; * 49 Words - communication with test jig *
 00038 ; * 17 Words - calibration look-up table (16 bytes of data) *
 00039 ; * 13 Words - Test Code to generate Calibration Constants *
 00040 ; * RAM Memory: *
 00041 ; * 16 Bytes -Temporary- Store 16 bytes of calibration constant*
 00042 ; * 4 Bytes -Temporary- Store 4 bytes of temp variables *
 00043 ; **
 00044
Warning[217]: Hex file format specified on command line.
 00045 list p=16C71,f=inhx8m
 00046 include <p16C71.inc>
 00001 LIST
 00002 ; P16C71.INC Standard Header File, Version 1.00 Microchip Technology, Inc.
 00142 LIST
2007 3FF1 00047 __CONFIG _CP_OFF&_WDT_OFF&_XT_OSC&_PWRTE_OFF
 00048
 00049 ; ************************************
 00050 ; * Port A (RA0-RA4) bit definitions *
 00051 ; ************************************
 00052 ; Port A is not used in this test program
 00053
 00054 ; ************************************
 00055 ; * Port B (RB0-RB7) bit definitions *
apMMSRS_Jé~ÖÉ=QJNU =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
 00056 ; ************************************
 00057 #define CLOCK 6 ; clock line for ISP
 00058 #define DATA 7 ; data line for ISP
 00059 ; Port pins RB0-5 are not used in this test program
 00060
 00061 ; ************************************
 00062 ; * RAM register usage definition *
 00063 ; ************************************
 0000000C 00064 CSUMTOTAL EQU 0Ch ; Address for checksum var
 0000000D 00065 COUNT EQU 0Dh ; Address for COUNT var
 0000000E 00066 DATAREG EQU 0Eh ; Address for Data output register var
 0000000F 00067 COUNTDLY EQU 0Fh ; Address for clock delay counter
 00068
 00069 ; These two symbols are used for the start and end address
 00070 ; in RAM where the calibration bytes are stored. There are 16 bytes
 00071 ; to be stored in this example; however, you can increase or
 00072 ; decrease the number of bytes by changing the STARTCALBYTE or ENDCALBYTE
 00073 ; address values.
 00074
 00000010 00075 STARTCALBYTE EQU 10h ; Address pointer for start CAL byte
 0000002F 00076 ENDCALBYTE EQU 2Fh ; Address pointer for end CAL byte
 00077
 00078 ; Table length of lookup table (number of CAL parameters to be stored)
 00079
 00000020 00080 CALTABLELENGTH EQU ENDCALBYTE - STARTCALBYTE + 1
 00081
0000 00082 ORG 0
 00083 ; **
 00084 ; * testcode routine *
 00085 ; * TEST code - sets up RAM register with register address as data *
 00086 ; * Uses file register STARTCALBYTE through ENDCALBYTE to store the*
 00087 ; * calibration values that are to be programmed into the lookup *
 00088 ; * table by the test jig running ISPPRGM. *
 00089 ; * Customer would place calibration code here and make sure that *
 00090 ; * calibration constants start at address STARTCALBYTE *
 00091 ; **
0000 00092 testcode
0000 3010 00093 movlw STARTCALBYTE ; TEST -
0001 0084 00094 movwf FSR ; TEST - Init FSR with start of RAM addres
0002 00095 looptestram
0002 0804 00096 movf FSR,W ; TEST - Place address into W
0003 0080 00097 movwf INDF ; TEST - Place address into RAM data byte
0004 0A84 00098 incf FSR,F ; TEST - Move to next address
0005 0804 00099 movf FSR,W ; TEST - Place current address into W
0006 3C30 00100 sublw ENDCALBYTE+1 ; TEST - Subtract from end of RAM
0007 1D03 00101 btfss STATUS,Z ; TEST - Skip if at END of ram
0008 2802 00102 goto looptestram ; TEST - Jump back and init next RAM byte
0009 0103 00103 clrw ; TEST - Clear W
000A 200F 00104 call lookuptable ; TEST - Get first CAL value from lookup table
000B 3CFF 00105 sublw 0FFh ; TEST - Check if lookup CAL table is blank
000C 1903 00106 btfsc STATUS,Z ; TEST - Skip if table is NOT blank
000D 2830 00107 goto calsend ; TEST - Table blank - send out cal parameters
000E 00108 mainloop
000E 280E 00109 goto mainloop ; TEST - Jump back to self since CAL is done
 00110
 00111 ; **
 00112 ; * lookuptable *
 00113 ; * Calibration constants look-up table. This is where the CAL *
 00114 ; * Constants will be stored via ISP protocol later. Note it is *
 00115 ; * blank, since these values will be pogrammed by the test jig *
 00116 ; * running ISPPRGM later. *
 00117 ; * Input Variable: W stores index for table lookup *
 00118 ; * Output Variable: W returns with the calibration constant *
 00119 ; * NOTE: Blank table when programmed reads “FF” for all locations *
 00120 ; **
000F 00121 lookuptable
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJNV

AN656
000F 0782 00122 addwf PCL,F ; Place the calibration constant table here!
 00123
002F 00124 ORG lookuptable + CALTABLELENGTH
002F 34FF 00125 retlw 0FFh ; Return FF at last location for a blank table
 00126
 00127 ; **
 00128 ; * calsend subroutine *
 00129 ; * Send the calibration data stored in locations STARTCALBYTE *
 00130 ; * through ENDCALBYTE in RAM to the programming jig using a serial*
 00131 ; * clock and data protocol *
 00132 ; * Input Variables: STARTCALBYTE through ENDCALBYTE *
 00133 ; **
0030 00134 calsend
0030 018C 00135 clrf CSUMTOTAL ; Clear CSUMTOTAL reg for delay counter
0031 018D 00136 clrf COUNT ; Clear COUNT reg to delay counter
0032 00137 delayloop ; Delay for 100 mS to wait for prog jig wakeup
0032 0B8D 00138 decfsz COUNT,F ; Decrement COUNT and skip when zero
0033 2832 00139 goto delayloop ; Go back and delay again
0034 0B8C 00140 decfsz CSUMTOTAL,F ; Decrement CSUMTOTAL and skip when zero
0035 2832 00141 goto delayloop ; Go back and delay again
0036 0186 00142 clrf PORTB ; Place “0” into port b latch register
0037 1683 00143 bsf STATUS,RP0 ; Switch to bank 1
0038 303F 00144 movlw b’00111111’ ; RB6,7 set to outputs
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0039 0086 00145 movwf TRISB ; Move to TRIS registers
003A 1283 00146 bcf STATUS,RP0 ; Switch to bank 0
003B 018C 00147 clrf CSUMTOTAL ; Clear checksum total byte
003C 3001 00148 movlw high lookuptable+1 ; place MSB of first addr of cal table into W
003D 204D 00149 call sendcalbyte ; Send the high address out
003E 3010 00150 movlw low lookuptable+1 ; place LSB of first addr of cal table into W
003F 204D 00151 call sendcalbyte ; Send low address out
0040 3010 00152 movlw STARTCALBYTE ; Place RAM start address of first cal byte
0041 0084 00153 movwf FSR ; Place this into FSR
0042 00154 loopcal
0042 0800 00155 movf INDF,W ; Place data into W
0043 204D 00156 call sendcalbyte ; Send the byte out
0044 0A84 00157 incf FSR,F ; Move to the next cal byte
0045 0804 00158 movf FSR,W ; Place byte address into W
0046 3C30 00159 sublw ENDCALBYTE+1 ; Set Z bit if we are at the end of CAL data
0047 1D03 00160 btfss STATUS,Z ; Skip if we are done
0048 2842 00161 goto loopcal ; Go back for next byte
0049 080C 00162 movf CSUMTOTAL,W ; place checksum total into W
004A 204D 00163 call sendcalbyte ; Send the checksum out
004B 0186 00164 clrf PORTB ; clear out port pins
004C 00165 calsenddone
004C 284C 00166 goto calsenddone ; We are done - go home!
 00167
 00168 ; **
 00169 ; * sendcalbyte subroutine *
 00170 ; * Send one byte of calibration data to the programming jig *
 00171 ; * Input Variable: W contains the byte to be sent *
 00172 ; **
004D 00173 sendcalbyte
004D 008E 00174 movwf DATAREG ; Place send byte into data register
004E 078C 00175 addwf CSUMTOTAL,F ; Update checksum total
004F 3008 00176 movlw .8 ; Place 8 into W
0050 008D 00177 movwf COUNT ; set up counter register
0051 00178 loopsendcal
0051 1706 00179 bsf PORTB,CLOCK ; Set clock line high
0052 205C 00180 call delaysend ; Wait for test jig to synch up
0053 0D8E 00181 rlf DATAREG,F ; Rotate to next bit
0054 1786 00182 bsf PORTB,DATA ; Assume data bit is high
0055 1C03 00183 btfss STATUS,C ; Skip if the data bit was high
0056 1386 00184 bcf PORTB,DATA ; Set data bit to low
0057 1306 00185 bcf PORTB,CLOCK ; Clear clock bit to clock data out
0058 205C 00186 call delaysend ; Wait for test jig to synch up
apMMSRS_Jé~ÖÉ=QJOM =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
0059 0B8D 00187 decfsz COUNT,F ; Skip after 8 bits
005A 2851 00188 goto loopsendcal ; Jump back and send next bit
005B 0008 00189 return ; We are done with this byte so return!
 00190
 00191 ; **
 00192 ; * delaysend subroutine *
 00193 ; * Delay for 50 ms to wait for the programming jig to synch up *
 00194 ; **
005C 00195 delaysend
005C 3010 00196 movlw 10h ; Delay for 16 loops
005D 008F 00197 movwf COUNTDLY ; Use COUNTDLY as delay count variable
005E 00198 loopdelaysend
005E 0B8F 00199 decfsz COUNTDLY,F ; Decrement COUNTDLY and skip when done
005F 285E 00200 goto loopdelaysend ; Jump back for more delay
0060 0008 00201 return
 00202 END

MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX ---------------- ---------------X XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX X--------------- ----------------
2000 : -------X-------- ---------------- ---------------- ----------------

All other memory blocks unused.

Program Memory Words Used: 66
Program Memory Words Free: 958

Errors : 0
Warnings : 1 reported, 0 suppressed
Messages : 1 reported, 0 suppressed
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJON

AN656
NOTES:
apMMSRS_Jé~ÖÉ=QJOO =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

AN656
NOTES:
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apMMSRS_Jé~ÖÉ=QJOP

DS30277D-page 24  2003 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

Phoenix
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Marketing Support Division
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Marketing Support Division
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611 Fax: 39-0331-466781

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

03/25/03

WORLDWIDE SALES AND SERVICE

	Section 1 - Introduction
	In-Circuit Serial Programming™ (ICSP™) Guide

	Section 2 - Technical Briefs
	TB017 - How to Implement ICSP™ Using PIC12C5XX OTP MCUs
	TB013 - How to Implement ICSP™ Using PIC16CXXX OTP MCUs
	TB015 - How to Implement ICSP™ Using PIC17CXXX OTP MCUs
	TB016 - How to Implement ICSP™ Using PIC16F8X FLASH MCUs
	1.0 Programming the PIC12C5XX
	1.1 Hardware Requirements
	1.2 Programming Mode

	2.0 Program Mode Entry
	2.1 Programming Method
	2.2 Programming Pulse Width
	2.3 Special Memory Locations
	2.4 Program/Verify Mode
	2.5 Programming Algorithm Requires Variable VDD

	3.0 Configuration Word
	4.0 Code Protection
	4.1 Embedding Configuration Word and ID Information in the HEX File
	4.2 Checksum

	5.0 Program/Verify Mode Electrical Characteristics

	Section 3 - Programming Specifications
	In-Circuit Serial Programming™ for PIC12C5XX OTP MCUs
	1.0 Programming the PIC12C67X and PIC12CE67X
	1.1 Hardware Requirements
	1.2 Programming Mode

	2.0 Program Mode Entry
	2.1 User Program Memory Map
	2.2 Program/Verify Mode
	2.3 Programming Algorithm Requires Variable VDD

	3.0 Configuration Word
	4.0 Code Protection
	4.1 Embedding Configuration Word and ID Information in the HEX File
	4.2 Checksum

	5.0 Program/Verify Mode Electrical Characteristics

	In-Circuit Serial Programming™ for PIC12C67X and PIC12CE67X OTP MCUs
	1.0 Programming the PIC14000
	1.1 Hardware Requirements
	1.2 Programming Mode

	2.0 Program Mode Entry
	2.1 User Program Memory Map
	2.2 Program/Verify Mode
	2.3 Programming Algorithm Requires Variable VDD

	3.0 Configuration Word
	4.0 Code Protection
	4.1 Calibration Space
	4.2 Embedding Configuration Word and ID Information in the HEX File
	4.3 Checksum

	5.0 Program/Verify Mode Electrical Characteristics

	In-Circuit Serial Programming for PIC14000 OTP MCUs
	1.0 Programming the PIC16C55X
	1.1 Hardware Requirements
	1.2 Programming Mode

	2.0 Program Mode Entry
	2.1 User Program Memory Map
	2.2 Program/Verify Mode
	2.3 Programming Algorithm Requires Variable VDD

	3.0 Configuration Word
	4.0 Code Protection
	4.1 Programming Locations 0x0000 to 0x03F after Code Protection
	4.2 Embedding Configuration Word and ID Information in the HEX File
	4.3 Checksum

	5.0 Program/Verify Mode Electrical Characteristics

	In-Circuit Serial Programming for PIC16C55X OTP MCUs
	1.0 Programming the PIC16C6XX/7XX/9XX
	1.1 Hardware Requirements
	1.2 Programming Mode

	2.0 Program Mode Entry
	2.1 User Program Memory Map
	2.2 Program/Verify Mode
	2.3 Programming Algorithm Requires Variable VDD

	3.0 Configuration Word
	3.1 Embedding Configuration Word and ID Information in the HEX File
	3.2 Checksum

	4.0 Program/Verify Mode

	Programming Specifications for PIC16C6XX/7XX/9XX OTP MCUs
	1.0 Programming The PIC17C7XX
	1.1 Hardware Requirements

	2.0 Parallel Mode Program Entry
	2.1 Program/Verify Mode

	3.0 Parallel Mode Programming Specifications
	4.0 Serial Mode Program Entry
	4.1 Hardware Requirements
	4.2 Serial Program Mode Entry
	4.3 Software Commands

	5.0 Configuration Word
	5.1 Reading Configuration Word
	5.2 Embedding Configuration Word Information in the HEX File
	5.3 Reading From and Writing To a Code Protected Device
	5.4 Checksum Computation
	5.5 Device ID Register

	6.0 Parallel Mode AC/DC Characteristics and Timing Requirements for Program/Verify Test Mode
	7.0 Electrical Specifications for Serial Programming Mode

	In-Circuit Serial Programming for PIC17C7XX OTP MCUs
	1.0 Programming the PIC18CXXX
	1.1 Hardware Requirements
	1.2 Programming Mode

	2.0 In-Circuit Serial Programming™ (ICSP™) MODE
	2.1 Introduction
	2.2 ICSP Operation
	2.3 Serial Instruction Execution For Two-Cycle, One-Word Instructions
	2.4 Serial Instruction Execution For Two-Word, Two-Cycle Instructions
	2.5 TBLWT Instruction
	2.6 TBLRD Instruction

	3.0 Configuration Word
	3.1 ID Locations
	3.2 Embedding Configuration Word Information in the HEX File
	3.3 Checksum Computation

	4.0 AC/DC Characteristics Timing Requirements for Program/Verify Test Mode

	In-Circuit Serial Programming™ for PIC18CXXX OTP MCUs
	1.0 Programming the PIC16F8X
	1.1 Hardware Requirements
	1.2 Programming Mode

	2.0 Program Mode Entry
	2.1 User Program Memory Map
	2.2 ID Locations
	2.3 Program/Verify Mode
	2.4 Programming Algorithm Requires Variable VDD

	3.0 Configuration Word
	3.1 Device ID Word

	4.0 Code Protection
	4.1 Disabling Code Protection
	4.2 Embedding Configuration Word and ID Information in the HEX File
	4.3 Checksum Computation

	5.0 Program/Verify Mode Electrical Characteristics
	5.1 Embedding Data EEPROM Contents in HEX File

	PIC16F8X EEPROM Memory Programming Specification
	1.0 Programming the PIC16F62X
	1.1 Hardware Requirements
	1.2 Programming Algorithm Requires Variable VDD
	1.3 Programming Mode

	2.0 Program Details
	2.1 User Program Memory Map
	2.2 User ID Locations
	2.3 Program/Verify Mode

	3.0 Common Programming Tasks
	3.1 Bulk Erase Program Memory
	3.2 Bulk Erase Data Memory
	3.3 Disabling Code Protection
	3.4 Programming Program Memory
	3.5 Program Data Memory
	3.6 Programming Range of Program Memory
	3.7 Configuration Word
	3.8 Device ID Word
	3.9 Embedding Configuration Word and ID Information in the HEX File
	3.10 Checksum Computation

	4.0 Program/Verify Mode Electrical Characteristics
	4.1 Embedding Data EEPROM Contents in HEX File

	PIC16F62X EEPROM Memory Programming Specification
	1.0 Programming the PIC16F87X
	1.1 Programming Algorithm Requirements
	1.2 Programming Mode

	2.0 Program Mode Entry
	2.1 User Program Memory Map
	2.2 Data EEPROM Memory
	2.3 ID Locations
	2.4 Program/Verify Mode
	2.5 Erasing Program and Data Memory

	3.0 Configuration Word
	3.1 Device ID Word

	4.0 Embedding the Configuration Word and ID Information in the HEX File
	5.0 Checksum Computation
	6.0 Program/Verify Mode Electrical Characteristics

	PIC16F87X EEPROM Memory Programming Specification

	Section 4 - Application Notes
	In-Circuit Serial Programming™ (ICSP™) of Calibration Parameters Using a PICmicro® Microcontroller

	Worldwide Sales and Service

