
AN716
Migrating Designs from PIC16C74A/74B to PIC18C442

00716a.book Page 1 Monday, September 27, 1999 12:04 PM
INTRODUCTION

The PIC18CXX2 was intended to make conversions
from midrange controllers to enhanced controllers as
easily as possible. Changes to register and bit names,
and bit locations were kept to a minimum. The
PIC18CXX2 was designed to be pin-compatible with
28-pin and 40-pin midrange controllers.

This application note describes the minimum changes
required to port code from the PIC16C74A to the
PIC18C442, and are typical when migrating code from
any midrange controller to any enhanced controller.

Changes to the PIC16C74A code largely consists of
renaming registers and bits, moving bits to new regis-
ters, and placing variables into the appropriate places
in RAM. Where additional features have been added,
changes to code have been suggested.

OSCILLATOR OPERATION

Changes to the oscillator circuit or device configuration
with respect to the oscillator mode may be required.
Oscillator performance should be verified to ensure
that it starts and operates as expected.

Crystal oscillator modes may require changes in load-
ing capacitors and/or oscillator mode. RC oscillators
may operate at a different frequency than expected on
the PIC18C442 (when using the same components).

OSCILLATOR MODES

The PIC18C442 has more oscillator modes than the
PIC16C74A. Two RC modes affect the use of one pin.
OSC1 is used for the RC oscillator, as before. OSC2
may be used either for clock output (FOSC/4) or as dig-
ital I/O pin RA6.

There are now two HS modes. The HS/PLL mode oper-
ates with a crystal or resonator from 4 MHz to 10 MHz
while the HS mode can use a crystal or resonator up to
20 MHz.

At Power-On Reset, the OST (1024 oscillator cycles)
and PWRT (optional 72 ms) delays occur as in the HS
mode. When the PLL is enabled, an additional 2 ms
delay is added to allow the Phase Locked Loop (PLL)
to lock to the crystal frequency and stabilize.

HS/PLL mode uses a PLL to multiply the oscillator fre-
quency by 4, providing an output up to 40 MHz to the
instruction clock divider. This is divided to produce the
Q clocks, resulting in the 10 MHz instruction clock rate.

When waking from SLEEP, the OST and 2 ms PLL
delays are required for the oscillator and PLL to restart
in HS/PLL mode.

CLOCK SWITCHING

The PIC18C442 now allows use of the Timer1 oscilla-
tor in place of the system oscillator. When operating
from the Timer1 oscillator, the system oscillator is shut
down as in SLEEP mode, and will require the same
delays to restart as when waking from SLEEP. This
allows continued operation at very low speed (Fcycle =
32 kHz/4 = 8 kHz), with power consumption almost as
low as SLEEP mode. Clock switching is possible
between any system oscillator mode and the Timer1
oscillator. However, the system oscillator mode cannot
be changed.

Both of the following conditions must be met to allow
clock switching:

• The Timer1 oscillator must be enabled by setting
the T1OSCEN bit in T1CON<3>.

• Clock switching must be enabled by clearing the
OSCSEN bit in CONFIG1H<5>.

Note: Bits not defined in the PIC16C74A should
not be modified in the PIC18C442 until the
effects of these changes are known.

Note 1: Even though compatible devices are
tested to the same electrical specifica-
tions, the device characteristics may have
changed due to changes in the manufac-
turing process. These differences should
not affect systems that were designed well
within the device specifications. For sys-
tems that operate close to or outside the
specification limits, manufacturing differ-
ences may cause the device to behave
differently.

Author: Brett Duane
Microchip Technology Inc.

Note 2: Oscillator operation should be verified to
ensure that it starts and performs as
expected. Adjusting the loading capacitor
values and/or the oscillator mode may be
required.
 1999 Microchip Technology Inc. Preliminary DS00716A-page 1

AN716

00716a.book Page 2 Monday, September 27, 1999 12:04 PM
The actual clock switching is performed by operating
the SCS bit, OSCCON<0>. Clearing the SCS bit
causes the controller oscillator to be used for the con-
troller clock, while setting the SCS bit causes the
Timer1 oscillator to be used.

Peripherals that depend on the system clock for timing
will be affected by the change in clock frequency.

INSTRUCTION CHANGES

When migrating code from midrange to enhanced con-
trollers, the user must become aware of changes to the
instruction set and make appropriate changes to their
code. Usually, this requires examining the points in the
code where program execution branches, depending
on the state of a STATUS bit. Sometimes new instruc-
tions can simplify existing code.

Appendix C lists instructions for which status bit opera-
tion has changed from the PIC16C74A to the
PIC18C422. Table C-1 lists the instructions that are
carried over from the PIC16C74A, but generally affect
new status bits. Table C-2 lists the instructions that
were not carried over, and provides replacement
instructions. Table C-3 lists new instructions, the status
bits they affect or detect, and a short description of
what the instruction does.

RAM

In the PIC16C74A, all variables and Special Function
Registers (SFR’s) are stored in two banks. Each bank
can provide up to 128 addresses. The first 32 locations
in each bank are reserved for SFR’s while the remain-
der is used for GPR’s in RAM.

The PIC18C442 data memory is grouped into banks of
256 bytes each. All SFR’s are contained in bank 15.
The PIC18C442 can store all variables in bank 0 with
the same addresses used in the PIC16C74A.
Addresses should be 12-bits long, and have the form
“0x0nn” (the first 4 bits are always 0 for bank 0,
nn = address used in the PIC16C74A).

The BANKSEL directive and banking instructions of the
PIC16C74A are no longer required in the PIC18C442,
as all data variables can be stored in bank 0. Refer-
ences to the BANKSEL directive can be commented
out, removed, or left in place “as is”. As data memory
requirements grow, either the BANKSEL directive or
firmware can modify the BSR to select the correct
bank.

1. Ensure that all RAM variables have 12-bit
addresses assigned to them, and are located in
bank 0.

2. When the code clears STATUS bits RP1 and
RP0 for the first time, replace these lines with
clrf BSR.

3. Comment out or remove all other references to
RP0 or RP1.

4. Comment out or remove all references to the
BANKSEL directive (optional).

Access banking is automatically used when an oper-
and has a 12-bit address below 0x080 (GPRs in the
bottom half of bank 0), or at and above 0xF80 (SFRs in
the top half of bank 15). When accessing operands in
the access bank range (0x000–0x07F or 0xF80–
0xFFF), the BSR is ignored. Addresses in the lower half
of the access range access bank 0, while addresses in
the upper half of the access range access bank 15.

In the PIC16C74A, SFRs were contained in the lower
32 locations of each bank. In the PIC18C442, all SFRs
are located in the top portion of bank 15, and have
12-bit addresses assigned to them (0xF80 to 0xFFF).
When accessing the SFRs, their symbolic names
should be used. Access banking will ignore the BSR
and automatically select bank 15 to access SFRs. Most
SFR names are unchanged or very similar to those in
the PIC16C74A. (See Appendix A.)

The FSR register is replaced by the register pair
FSR0H:FSR0L, and contains the entire 12-bit address
required to access any SFR or GPR in any bank.
Change FSR to FSR0L. FSR0H should be cleared.
Use INDF0 as the operand in instructions to access the
register or RAM selected by FSR0. The practice of
using FSR0 to access SFR’s is discouraged. Direct
addressing using the SFR name uses less code and is
easier to maintain.

1. If the FSR is used to access SFRs, replace the
corresponding INDF operand with the SFR
name.

2. Replace all bsf STATUS,IRP instructions and
bcf STATUS,IRP instructions with clrf
FSR0H.

3. Replace all occurrences of BANKISEL var-
name with clrf FSR0H.

4. Change FSR to FSR0L.

5. Change INDF to INDF0.

If FSR0L is incremented or decremented using INCF or
DECF instructions beyond 8 bits, FSR0L will roll over,
and the STATUS bits will be affected accordingly.
FSR0H will not be affected by the rollover (see
Example 1).

EXAMPLE 1: INCREMENTING FSR0L
AND OVERFLOW

clrf FSR0H ; clear FSR0H
movlw 0xFF
movwf FSR0L ; load FSR0L with max

; 8-bit count
incf FSR0L, F ; FSR0L incremented to 0x00

; STATUS,C=1 STATUS,Z=1
; FSR0H=0x00 (no change)
DS00716A-page 2 Preliminary  1999 Microchip Technology Inc.

AN716

00716a.book Page 3 Monday, September 27, 1999 12:04 PM
PROGRAM MEMORY

The PIC16C74A uses a 13-bit program counter to
address program memory words. The PIC18C442
uses a 21-bit program counter to address program
memory bytes and counts by two when fetching pro-
gram instructions. Attempts to write a 1 to PCL<0> will
result in PCL<0>=0. Therefore, the program counter
will always access program memory with the address
LSb always set to 0.

Writing to PCL will cause PCLATH and PCLATU to be
written to PCH and PCU, respectively, as in the
PIC16C74A. However, a read of PCL will update
PCLATH and PCLATU from PCH and PCU.

The CALL and GOTO instructions contain all the
addressing information required. Manipulation of
PCLATH to prepare for jumps is not required, and will
have no practical effect. Such code may be left in the
program, commented out, or removed.

Instructions with $

Occasionally, programmers will use a ‘$’ symbol to indi-
cate the program address of the current opcode. ‘$’ by
itself still functions as before. However, since the pro-
gram counter now addresses bytes instead of words,
any offsets added to ‘$’ need to be doubled to refer to
the correct address (see Example 2).

EXAMPLE 2: $ OFFSETS DOUBLED

RETLW Tables

Computed GOTO subroutines for RETLW tables will
require modifications to the way the table offset is com-
puted before the table is called, or modification of the
offset within the table subroutine. Since a computed
goto causes a jump to a retlw instruction, PCL <0>
must be 0. This requires the offset to be doubled to
jump to the correct location in the table.

Example 3 shows a way to modify the table subroutine
to support a 256 entry table (offset = 0 to 255) without
having to consider how the table was called, or possible
code page boundary issues. One temporary RAM loca-
tion and a label at the start of the table entries are
required.

EXAMPLE 3: MODIFIED ROUTINE TO SUPPORT 256 ENTRY TABLE

goto $-6 ; replaces goto $-3
goto $+0x2E ; replaces goto $+0x17

movf OFFSET,w ; OFFSET=0x00 to 0xFF
call table
...

ORG 0x3C0
table movwf taboff ; save table offset

bcf STATUS,C ; clear STATUS bit
rlcf taboff,F ; multiply by 2, save in taboff

movlw HIGH(tab_st1) ; get high byte of table start
btfsc STATUS,C ; test carry bit
incf WREG,W
movwf PCLATH ; modify PCLATH if required

movlw LOW(tab_st1) ; get low byte of table address
addwf taboff,W ; add in offset
btfsc STATUS,C ; test for overflow
incf PCLATH,F ; increment if needed
movwf PCL ; make jump, PCLATH and PCLATU are

: written to PCH and PCU

tab_st1 retlw 0x00 ; table body, first entry, offset=0
retlw 0x01 ; (256 entry, 256 word/512 byte)
...
...
 1999 Microchip Technology Inc. Preliminary DS00716A-page 3

AN716

00716a.book Page 4 Monday, September 27, 1999 12:04 PM
TABLES IN PROGRAM MEMORY

Computed GOTOs using RETLW tables can be per-
formed on the PIC18C442, but this allows only one byte
of data to be stored in each program memory instruc-
tion (16-bits), and limits the table size to 256 entries.

Table operations allow two 8-bit bytes of data to be
stored in each program memory word, doubling table
data density. There is no limit to the number of table
entries, up to the maximum program memory. Program
memory can also be read to calculate a program
checksum to verify program integrity.

Table Reads

A 21 bit table pointer to program memory is loaded with
the address of the data byte to be read. This pointer is
stored in TBLPTRU<4:0>, TBLPTRH<7:0>, and
TBLPTRL<7:0>. A TBLRD* instruction causes the data
at that address to be placed into TABLAT where the
program can use it as data.

TBLPTRU<4:0>, TBLPTRH<7:0>, and TBLPTRL<7:0>
are SFRs in memory space. TBLPTRL<0> need not
always be 0 as with PCL<0>. The TBLPTR group of
registers can be automatically incremented or decre-
mented using variations of the TBLRD* instruction.
Table 1 shows the instructions and their effects on
TABLAT and TBLPTR. Pointer increment/decrement
operations affect all 21 bits of the TBLPTR registers.

TABLE 1: TABLE READ INSTRUCTIONS
AND EFFECTS ON THE TABLE
POINTER

Steps for Table Reads

The steps to perform a table read from program mem-
ory are:

1. Set the table pointer to the desired byte address.
(TBLPTR may be even or odd as required.)

2. Execute a TBLRD instruction.

3. Read the byte retrieved from program memory
in TABLAT.

Code for Table Reads

An example of table read code is shown in Example 4.

EXAMPLE 4: TABLE READ CODE

Instruction Effects

TBLRD* Places copy of program memory
byte in TABLAT

TBLRD*+ Places copy of program memory
byte in TABLAT
Increments TBLPTR after read

TBLRD*- Places copy of program memory
byte in TABLAT
Decrements TBLPTR after read

TBLRD+* Increments TBLPTR before read
Places copy of program memory
byte in TABLAT

RdStr movlw HIGH(string)
movwf TBLPTRH ; load high byte of pointer (0x12)
movlw LOW(string)
movwf TBLPTRL ; load low byte of pointer (0x34)

read tblrd*+ ; read byte from program memory,
; and increment pointer one byte

movff TABLAT,PORTB ; move byte from table latch to output port B

tstfsz TABLAT ; was retrieved byte a null?
goto read ; no, do loop again

return

ORG 0x1234
String DW "This is a test.",0x00 ; text string
DS00716A-page 4 Preliminary  1999 Microchip Technology Inc.

AN716

00716a.book Page 5 Monday, September 27, 1999 12:04 PM
INTERRUPTS

The PIC18C442 resets with the interrupt structure in a
PIC16C74A compatible mode. The interrupt vector ori-
gin has been changed from 0x0004 in the PIC16C74A
to 0x0008 in the PIC18C442.

Interrupt Pins

The RB0/INT pin on the PIC16C74A has been
renamed to RB0/INT0. The PIC18C442 offers 2 addi-
tional interrupt pins. RB1 and RB2 have been renamed
RB1/INT1 and RB2/INT2 to support the additional
interrupt functions.

Interrupt Handling Registers

The INTCON register is mostly unchanged. Bits INTE
and INTF are renamed INT0IE and INT0IF, respec-
tively.

The INTCON2 register contains bits that determine
which edge of INT0, INT1, and INT2 will trigger inter-
rupts. Interrupt priority for Timer0 and PORTB Inter-
rupt-on-change is set in INTCON2. PORTB weak pull-
up resistors are controlled here.

The INTCON3 register contains INT1 and INT2 inter-
rupt enable bits, the interrupt flag bits, and interrupt pri-
ority bits.

Interrupt flag bits located in PIR1 have interrupt enable
bits in PIE1 and interrupt priority bits in IPR1. The same
is true for PIR2, PIE2, and IPR2.

1. Change the interrupt vector origin from 0x0004
to 0x0008.

2. Rename INT bit to INT0, INTF to INT0IF, and
INTE to INT0IE.

3. Change OPTION, NOT_RBPU to INTCON2,
NOT_RBPU.

4. Change OPTION, INTEDG to INTCON2,
INTEDG0.

INT0 is always a high priority interrupt. The interrupt
enable bit, INT0IE, and interrupt flag bit, INT0IF, are
located in the INTCON register.

With respect to interrupt control, all other register and
bit names, and bit locations in the PIC16C74A are
unchanged in the PIC18C442.

Interrupt Priority

The PIC18C442 also offers 2 levels of interrupt priority,
each with its own interrupt vector. Interrupts assigned
high priority take the high priority interrupt vector at
0x0008, while interrupts assigned low priority take the
low priority interrupt vector at 0x0018. Interrupt priority
is enabled by setting IPEN, RCON<7> (Interrupt Prior-
ity Enable).

When IPEN is clear, all interrupts are considered high
priority and take the high priority vector. This is the pri-
ority mode compatible with the PIC16C74A.

When IPEN is set, interrupt priority is enabled. The
functions of GIE, INTCON<7> and PEIE, INTCON<6>
are modified. GIE becomes GIEH (Global Interrupt
Enable High) and PEIE becomes GIEL (Global Inter-
rupt Enable Low). If GIEL is clear, all low priority inter-
rupts are disabled. If GIEH is clear, all high and low
priority interrupts are disabled.

Each interrupt source has an associated interrupt prior-
ity bit to set its priority. When set, interrupt priority is
high. When clear, interrupt priority is low. If an interrupt
source has an interrupt flag bit in PIR1 or PIR2, corre-
sponding interrupt priority bits will be located in IPR1 or
IPR2. The remaining priority bits are located in
INTCON2 and INTCON3.

The interrupt priorities for Timer0 and RBIF are set
using TMR0IP, INTCON2<2> and RBIP, INTCON<2>.
Interrupt priorities for the INT1 and INT2 pins are set
using INT1IP, INTCON3<6> and INT2IP, INTCON3<7>.
Clearing these bits will select low priority interrupts.

The interrupt enable bits for INT1 and INT2 are set
using INT1IE, INTCON3<3>, and INT2IE,
INTCON3<4>. The corresponding interrupt flag bits are
INT1IF, INTCON3<3> and INT2IF, INTCON3<4>.

Return Address Stack

The PIC18C442 stack has a 31 level stack instead of
the 8 level stack in the PIC16C74A. The PIC18C442
also allows access to the stack pointer, stack error bits,
and top-of-stack contents. PUSH and POP instructions
have been added to manipulate the stack contents and
stack pointer

The PIC16C74A stack is 8 levels deep, and functions
as a circular buffer. Pushes beyond the 8th push over-
write the 1st push, 2nd push, etc. Pops beyond the 1st
push begin returning the 8th push, 7th push, etc. There
is no indication of the state of the stack. The stack con-
tents are not available to the program.

The PIC18C442 stack is 31 levels deep, and functions
as a linear buffer. The 31st push will set the stack over-
flow status bit STKFUL, STKPTR<7>. The 32nd push
will overwrite the 31st push. All pops beyond the 1st
push return 0x0000, set the stack underflow status bit
STKUNF, STKPTR<6>, and restarts the program (but
does not reset the device). Optionally, a device reset
can occur when the stack overflow and underflow
status bits are set (see RESETs.) The STKFUL and
STKUNF bits are reset only by a POR or by software.
This allows the program to respond to stack errors.

When the controller is initialized, the stack pointer
STKPTR contains 0x00, and points to a stack address
that contains 0x00000, which is the RESET vector. A
PUSH or CALL instruction, or an interrupt will increment
the stack pointer to the next higher stack location to
become the new top-of-stack where the PC is then
stored. A return instruction (RETURN or RETFIE) will
move the contents of the top-of-stack to the PC, and
 1999 Microchip Technology Inc. Preliminary DS00716A-page 5

AN716

00716a.book Page 6 Monday, September 27, 1999 12:04 PM
decrement the stack pointer. The POP instruction sim-
ply decrements the stack pointer, discarding the con-
tents of the top-of-stack.

The 21-bit top-of-stack can be accessed through the
top-of-stack registers TOSU<4:0>, TOSH<7:0>, and
TOSL<7:0>. The top-of-stack is readable and writable,
allowing data to be stored and retrieved using the
stack.

Fast Register Stack

The fast register stack is a group of registers that saves
the contents of the WREG, STATUS, and BSR registers
every time an interrupt or subroutine call occurs. This
stack is one level deep and is not accessible to the
user. When a return with the fast option
(retfie FAST) is executed, the contents of the fast
register stack are restored back to the WREG,
STATUS, and BSR registers.

Calls may use the Fast Register Stack. A call with the
fast stack option (call label, FAST) saves the
WREG, STATUS, and BSR registers to the fast register
stack. A corresponding return is required to restore
these registers (return FAST).

If interrupts are enabled, the fast register stack cannot
be used for a return from a call. If an interrupt occurs
during a called subroutine, the contents of the fast reg-
ister stack will be replaced by the current WREG,
STATUS, and BSR contents at the time of the interrupt.
After the interrupt returns, the fast register stack will still
contain the WREG, STATUS, and BSR contents from
when the interrupt was executed. If a subroutine should
attempt to return using the fast register stack, an
improper context will be restored.

If interrupt priority is enabled, only high priority inter-
rupts can use the fast register stack. High priority inter-
rupts may interrupt low priority interrupts at any time.

RESETS

The PIC18C442 responds to all the same RESET
sources as the PIC16C74A.

The PCON register has been renamed to RCON. The
TO and PD bits from the STATUS register have been
moved to RCON. All bits retain the same functions in
the PIC18C442 as they had in the PIC16C74A.

Power-On Reset

The PCON register of the PIC16C74A has been
renamed RCON and contains the POR bit. Operation
of the POR bit is unchanged.

Brown-Out Reset

The PCON register of the PIC16C74A has been
renamed RCON and contains the BOR bit. Operation
of the BOR bit is unchanged.

The Brown-out Reset (BOR) module can be configured
as enabled or disabled in the PIC18C442 as in the
PIC16C74A. When BOR is enabled, the Power-up
Timer (PWRT) is also automatically enabled. The state
of the PWRT enable bit, PWRTEN, CONFIG2L<0> is
ignored. However, the PIC18C442 offers four BOR
thresholds instead of one, and is selected using
BORV1:BORV0, CONFIG2L<3:2>. The time that VDD
must remain below VBOR (Parameter D005) has
increased from the PIC16C74A (Parameter 35, TBOR).

1. Change PCON to RCON
2. Change STATUS, NOT_TO to RCON, NOT_TO

3. Change STATUS, NOT_PD to RCON, NOT_PD

4. Select VBOR threshold in configuration
(BORV1:BORV0, CONFIG2L<3:2>)

MCLR

MCLR on the PIC18C442 operates the same as the
PIC16C74A. No changes to the code or circuit are
required.

WDT

In the PIC18C442, the WDT now has its own
postscaler, independent of the Timer0 prescaler. The
WDT is enabled when WDTEN, CONFIG2H<0> is set,
disabled when clear. The WDT postscaler is pro-
grammed using WDTPS2:WDTPS0, CONFIG2H<3:1>
to select a ratio from 1:1 to 1:128.

TO, STATUS<4> and PD, STATUS<3> bits have been
moved to TO, RCON<3> and PD, RCON<2>. The
operation of these bits is unchanged.

If the WDT has been disabled by clearing WDTEN, the
WDT may be enabled under software control by setting
SWDTE, WDTCON<0>, and disabled by clearing this
bit. The WDT postscaler ratio can not be changed.

If the WDT is enabled using WDTEN, then changing
SWDTE will have no effect.

Stack Over/Underflow

The PIC16C74A has an 8 level stack. Once the PC has
been pushed to the stack 8 times, a 9th push would
overwrite the 1st stack location without any errors being
generated. The PIC18C442 uses a 31 level stack.
When the stack is almost full (30 pushes), and another
push occurs, the 31st push sets the STKFUL status bit.
The 32nd push overwrites the 31st push.

Conversely, the stack is empty (all pushes have been
popped) and another pop occurs, the STKUNF bit is set
and the PC is loaded with the RESET vector address.
This does not reset the controller, but does restart the
code.
DS00716A-page 6 Preliminary  1999 Microchip Technology Inc.

AN716

00716a.book Page 7 Monday, September 27, 1999 12:04 PM
The device can be configured to perform a reset when
either the STKFUL or STKUNF bits are set. Setting
SVTREN, CONFIG4L<0> will allow the stack error bits
to reset the controller. The STKFUL and STKUNF bits
are cleared only by a POR or by software. A reset
caused by a stack error will not clear these bits. To
determine the cause of this reset, the user will have to
poll the STKFUL and STKUNF bits and clear them
when taking corrective action.

RESET Instruction

The PIC18C442 offers a RESET instruction. This
instruction performs a device reset similar to a MCLR
reset. All peripherals are reset and program execution
resumes from the reset vector.

The RCON register contains the RI bit. The RI bit is set
by POR, BOR, and WDT resets, and is cleared by the
RESET instruction. The TO, PD, BOR, and POR bits are
unaffected. By polling the RI bit, RCON<4>, the reason
for this reset can be determined.

TIMER0

The PIC18C442 Timer0 resets to a mode identical to
the PIC16C74A. The Timer0 count is read and written
using TMR0L instead of TMR0. The OPTION_REG
register has been renamed T0CON.

The PSA bit, T0CON<3>, now only enables the Timer0
prescaler when clear, and disables the Timer0 pres-
caler when set (same effect as in the PIC16C74A with
respect to Timer0).

If a different Timer0 prescaler ratio is required,
PS2:PS0, OPTION<2:0> has been replaced by
T0PS2:T0PS0, T0CON<2:0>, which functions identi-
cally with respect to Timer0.

Timer0 will set its interrupt flag bit (T0IF) when TMR0L
overflows (same as when Timer0 overflows in the
PIC16C74A).

The WDT and its postscaler are unaffected by settings
in T0CON. See the section on the WDT.

The RBPU bit, OPTION<7>, has been renamed and
moved to RBPU, INTCON2<7>. INTEDG, OPTION<6>
has been renamed and moved to INT0EDG,
INTCON2<6>.

The changes required in code are:

1. Rename and move OPTION, NOT_RBPU to
INTCON2, NOT_RBUP.

2. Rename and move OPTION_REG, INTEDG to
INTCON2, INTEDG0.

3. Change OPTION_REG to T0CON.

4. Rename PS2:PS0 to T0PS2:T0PS0.

5. Operations modifying PS2:PS0 and PSA for the
WDT are commented out. Modify CONFIG2H
instead.

6. Timer0 reads/writes use TMR0L instead of
TMR0.

Timer0 can operate as a 16-bit timer by clearing
T08BIT, T0CON<6>. In this mode, TMR0H is written to
the Timer0 high byte when TMR0L is written. TMR0H
is updated from the Timer0 high byte when TMR0L is
read. Timer0 interrupts will occur when Timer0 (in
16-bit mode) rolls over from 0xFFFF to 0x0000.

TIMER1

The PIC18C442 Timer1 module is upwardly compati-
ble with the PIC16C74A Timer1 module.

When RD16, T1CON<7> is set, a read of TMR1L
causes TMR1H to be updated from the Timer1 high
byte. A write to TMR1L will cause the Timer1 high byte
to be updated from TMR1H. In this mode, the user does
not have to check to see if the low byte rolled over while
reading the high byte, or stop the timer when loading it.

The Timer1 oscillator of the PIC18C442 is functionally
identical to the PIC16C74A Timer1 oscillator. However,
due to process changes, operation of the Timer1 oscil-
lator should be verified to operate as expected.

TIMER2

The Timer2 module of the PIC18C442 is identical to the
Timer2 module of the PIC16C74A. No code changes
are required.

TIMER3

The PIC18C442 provides a fourth timer not present in
the PIC16C74A. This timer is identical to Timer1 as
implemented in the PIC18C442. Both timers can serve
as a timebase for the CCP capture and compare func-
tions, and may use the Timer1 oscillator. Both may be
reset by the CCP compare special event trigger.

CAPTURE/COMPARE/PWM

The capture, compare, and PWM functions of the
PIC16C74A are fully compatible with the PIC18C442.
No code changes or circuit modifications are required.

The PIC18C442 CCP module offers an extra mode not
present in the PIC16C74A. The compare mode can
toggle the CCP output pin on a match.

Note: Even though the user has made no
changes to the Timer1 oscillator circuit,
oscillator operation should be verified to
ensure that it starts and performs as
expected. Adjusting the loading capacitor
values may be required.
 1999 Microchip Technology Inc. Preliminary DS00716A-page 7

AN716

00716a.book Page 8 Monday, September 27, 1999 12:04 PM
A/D

The A/D module on the PIC18C442 resets to the same
state as in the PIC16C74A. Code written for the
PIC16C74A will run with only one change on the
PIC18C442. Because the PIC18C442 has a 10-bit A/D
module, two 8-bit registers are now required to make
the 10-bit result available. ADRES has been renamed
to ADRESH, and will contain the 8 MSb of the result. As
long as the user treats the ADCON0 and ADCON1 reg-
isters as if they were part of the PIC16C74A, the A/D
module will function the same as in the PIC16C74A.

A new register and three new bits in ADCON1 offer
some enhanced features over the PIC16C74A.
ADRESL holds the additional bits of the 10-bit conver-
sion result. ADFM, ADCON1<7> controls the justifica-
tion of the 10-bit result in ADRESH:ADRESL. If the
user wishes to use an 8-bit result, clear bit ADFM
(RESET state, compatible with the PIC16C74A), and
the 8 MSbs are placed in ADRESH. The remaining 2
bits are stored in ADRESL<7:6>. Bits ADRESL<6:0>
will be cleared. This format allows the user to use the
8-bit result in ADRESH in 8-bit math operations.

If the user wishes to make use of all 10 bits, set bit
ADFM. The 8 LSb are stored in ADRESL<7:0> and the
2 MSbs of the result are stored in ADRESH<1:0>. Bits
ADRESH<7:2> are cleared. This format is useful for
taking the 10-bit result from ADRESH:ADRESL, and
using it “as is” in 16-bit math operations.

The instruction clock can now run at 10 MHz (100 nS)
when a 10 MHz oscillator drives the PLL. The clock
sources available in ADCS1:ADCS0, ADCON0<7:6>
do not allow TAD to be set to a minimum of 1.6 µSec
with such high clock speeds. A third A/D clock select bit
is provided in ADCS2, ADCON1<6>. When ADCS2 is
set, the instruction clock is divided by 2 allowing TAD to
be set correctly. The internal A/D RC oscillator is not
affected.

The user can use an external voltage reference for the
A/D conversion in the PIC16C74A and the PIC18C442.
The PIC18C442 also allows the use of a low reference
voltage. Depending on the setting of PCFG3:PCFG0,
ADCON1<3:0>, the user can select as references the
controller supply and ground, an external high refer-
ence and the controller ground, or external high and
low references.

The references can not exceed the controller supply
rails, but can modify the conversion range by introduc-
ing a positive offset, and reducing the full scale input
voltage. Check the electrical specifications for limits on
the reference voltages (Parameters A20, A20A, A21,
A22, and A25).

Example 5 shows how to initialize the A/D module.

EXAMPLE 5: A/D SETUP

USART

The PIC16C74A USART is upwardly compatible with
the PIC18C442 USART. No code changes are
required.

The USART can monitor the serial data in 9-bit mode.
Setting the ADDEN, RCSTA<3> bit causes the USART
to generate an interrupt only when the 9th received
data bit is set, instead of every time a new data byte has
been received. RCREG is unchanged until the 9th bit is
set. When set, RCREG is loaded with the received
address.

This is useful for networks that indicate that the other 8
bits are a device address by setting the 9th bit. When
the 9th bit is clear, data is being sent.

SSP

SSPCON has been renamed SSPCON1. Otherwise,
the PIC16C74A SSP module is upwardly compatible
with the PIC18C442 MSSP module.

SPI Mode

The PIC16C74A SSP module is fully compatible with
the PIC18C442 with respect to SPI mode. No changes
to code are required.

This example shows how to initialize the A/D module
for the following conditions:

AN0 may be anywhere in the range of 0.5V to 3.5V.
The input is currently at 2.296V. The controller is
using an 8 MHz oscillator and the PLL. A 10-bit result
is desired for use in 16-bit calculations.

The clock source is selected by setting
ADCS2:ADCS0 to B“110”:

ADCS2 = B“1”, ADCS1:ADCS0 = B“10”.

The 32 MHz PLL output is divided by 64 to produce a
2.0 µSec TAD.

The port is configured to make AN0 and AN1 analog
inputs, AN2 as the low reference (VREF-) and AN3 as
the high reference (VREF+) by setting PCFG3:PCFG0
to B“1101”. 3.5V is applied to AN3, and 0.5V to AN2.
These references will apply to all conversions on all
channels.

The ADFM bit is set to select right justification of the
result.

The AN0 channel is selected by setting CHS2:CHS0
to B“000”, and the conversion started by setting the
GO/DONE bit, ADCON0<2>. When the GO/DONE bit
clears, ADRESH:ADRESL will contain 0x0265.
DS00716A-page 8 Preliminary  1999 Microchip Technology Inc.

AN716

00716a.book Page 9 Monday, September 27, 1999 12:04 PM
I2C Mode

The PIC16C74A SSP module is upwardly compatible
with the PIC18C442 MSSP module. No changes to
code are required for conversion.

The SSP module used in the PIC16C74A provides lim-
ited support for master mode I2C. The MSSP module is
used in the PIC18C442, and supports I2C master and
multi-master modes in hardware.

Master mode has been added. SSPCON2 has been
added to support hardware master modes. Slave mode
now provides general call support.

Master Mode

The master SSP module (MSSP) supports master
mode I2C in hardware through the use of SSPCON2.
Arbitration for multi-master operation is provided. The
baud rate generator is used to generate SCL.

In the PIC16C74A, master mode was implemented in
software that monitored and controlled the SCL and
SDA pins. Start (S) and stop (P) bit interrupts where
provided by SSP hardware.

The PIC18C442 still supports such operation without
code changes. However, master and multi-master
modes are now provided by hardware.

When master mode is selected (SSPM3:SSPM0,
SSPCON1<3:0> = B“1011”), and SSPEN,
SSPCON1<5> is set, the SSP module will control SCL
and SDA. Data and slave addresses (7-bit or 10-bit)
with R/W bit are sent in SSPBUF, and the baud rate is
set in SSPADD<6:0>.

Only one operation can be completed at a time. Each
operation must complete before the next can be
started. Successful completion is indicated by setting
SSPIF when the SSP module is becomes idle. Opera-
tions are start, repeated start, stop, sending 1 byte of
data, receiving 1 byte of data, and sending an ACK/
NACK. If an attempt is made to program the next oper-
ation before the module becomes idle, the program-
ming is ignored, the WCOL status bit, SSPCON1<7>,
is set and SSPIF remains clear. WCOL is cleared by
software. If the bus was busy, BCLIF, PIR2<3>, is set
generating an interrupt.

Slave General Call Support

Slave general call support is enabled by setting
GCEN, SSPCON2<7>. When an address match
occurs (either slave address, or the general call
address of 0x00 when GCEN is set), several actions
occur.

• The received address is placed in the SSPBUF
register

• The BUFFER FULL status bit BF, SSPSTAT<0>,
is set

• An ACK pulse is generated

• An interrupt is generated by setting
SSPIF, PIR1<3>

When the interrupt is serviced, SSPBUF must be read
to determine if the interrupt was generated by a slave
or general call address match.

When the slave is configured for 10-bit addresses with
GCEN set, and the general call address is detected,
the UA, SSPSTAT<1> bit will not be set. Instead, the
slave will begin receiving data after the ACK is sent.

CONCLUSION

Conversion of a PIC16C74A application to run on a
PIC18C442 consists of the following:

• Checking to make sure that the main and Timer1
(if used) oscillators work as expected

• Placing variables into bank 0 and assigning 12-bit
addresses

• Modifying computed goto subroutines for read-
ing tables

• Modifying the names and locations of bits and
registers

• If the Brown-out Reset is enabled, select a BOR
threshold

If desired, the user can make use of additional features
offered by the PIC18C442. These are:

• Additional system oscillator modes

• System clock switching for reduced power
requirements

• Additional memory (program and data)

• Data retrieval using program memory

• Additional interrupt pins

• Interrupt priority
• Stack access and status

• Optional stack error reset

• Fast register stack to save and restore context

• RESET instruction

• Timer0 operates as an 8 or 16-bit timer/counter

• A fourth timer, Timer3, that duplicates Timer1
• A 10-bit A/D module

• Full I2C master mode
 1999 Microchip Technology Inc. Preliminary DS00716A-page 9

AN716

00716a.book Page 10 Monday, September 27, 1999 12:04 PM
APPENDIX A: CHANGED REGISTER/BIT LOCATIONS/NAMES

TABLE A-1: CHANGED REGISTER/BIT LOCATIONS/NAMES

APPENDIX B: CODE CHANGES

PIC16C74A PIC18C442
Notes

Register Bit Register Bit

OPTION_REG NOT_RBPU INTCON2 NOT_RBPU

OPTION_REG INTEDG INTCON2 INTEDG0

OPTION_REG T0CS T0CON T0CS

OPTION_REG T0SE T0CON T0SE

OPTION_REG PSA T0CON PSA WDT has own postscaler. Enabled using
WDTEN, CONFIG2H<0>

OPTION_REG PS2 T0CON T0PS2 WDT postscaler set using WDTPS2, CONFIG2H<3>

OPTION_REG PS1 T0CON T0PS1 WDT postscaler set using WDTPS1, CONFIG2H<2>

OPTION_REG PS0 T0CON T0PS0 WDT postscaler set using WDTPS0, CONFIG2H<1>

PCON NOT_POR RCON NOT_POR

PCON NOT_BOR RCON NOT_BOR

STATUS NOT_TO RCON NOT_TO

STATUS NOT_PD RCON NOT_PD

INDF — INDF0 —

FSR — FSR0L —

TMR0 — TMR0L —

SSPCON — SSPCON1 —

ADRES — ADRESH —

; PIC18C442 code ; replaced PIC16C74A code

clrf BSR ; bcf STATUS,RP0
; bcf STATUS,RP1
; (first occurrence only)
; (otherwise comment out or remove)

movf INDF0,w ; movf INDF,w
movf TMR0L,w ; movf TMR0,w
movf FSR0L,w ; movf FSR,w
movf SSPCON1,w ; movf SSPCON,w
movf ADRESH,w ; movf ADRES,w

movf T0CON,w ; movf OPTION_REG,w (TIMER0 OPERATIONS ONLY)
movf RCON,w ; movf PCON,w
DS00716A-page 10 Preliminary  1999 Microchip Technology Inc.

AN716

00716a.book Page 11 Monday, September 27, 1999 12:04 PM
APPENDIX C: INSTRUCTION CHANGES FROM PIC16C74A TO PIC18C442

TABLE C-1: DIFFERENCES IN STATUS BIT OPERATION

TABLE C-2: INSTRUCTIONS NO LONGER SUPPORTED

Instruction
STATUS Bits

Notes
16C74A 18C442

ADDLW C, DC, Z C, DC, Z, OV, N

ADDWF C, DC, Z C, DC, Z, OV, N

ANDLW Z Z, N

ANDWF Z Z, N

COMF Z Z, N

DECF Z C, DC, Z, OV, N

INCF Z C, DC, Z, OV, N

IORLW Z Z, N

IORWF Z Z, N

MOVF Z Z, N

RETFIE GIE GIE/GIEH, PEIE/GIEL Interrupt priority modifies names and functions of
these bits

RLF C, DC, Z C, Z, N Rotate left using carry bit

RRF C, DC, Z C, Z, N Rotate right using carry bit

SUBLW C, DC, Z C, DC, Z, OV, N

SUBWF C, DC, Z C, DC, Z, OV, N

XORLW Z Z, N

XORWF Z Z, N

Legend: STATUS bits in Bold are affected in code conversion from PIC16C74A to PIC18C442

16C Instructions 16C STATUS Bits Work-Around

CLRW Z Use CLRF WREG instead

Legend: STATUS bits in Bold are affected in code conversion from PIC16C74A to PIC18C442
 1999 Microchip Technology Inc. Preliminary DS00716A-page 11

AN716

00716a.book Page 12 Monday, September 27, 1999 12:04 PM
TABLE C-3: NEW PIC18C442 INSTRUCTIONS

Instructions STATUS Bits Notes

ADDWFC C, DC, Z, OV, N Add WREG, F, and carry bit

BC Conditional branch depending on carry STATUS bit

BN Conditional branch depending on negative STATUS bit

BNC Conditional branch depending on carry STATUS bit

BNN Conditional branch depending on negative STATUS bit

BNOV Conditional branch depending on overflow STATUS bit

BNZ Conditional branch depending on zero STATUS bit

BOV Conditional branch depending on overflow STATUS bit

BRA Unconditional branch

BTG Toggle bit b of file f

BZ Conditional branch depending on zero STATUS bit

CPFSEQ Branch depending on result of unsigned subtraction

CPFSGT Branch depending on result of unsigned subtraction

CPFSLT Branch depending on result of unsigned subtraction

DAW C Decimal Adjust WREG

DCFSNZ Decrement file, skip next instruction if result is not zero

INFSNZ Increment file, skip next instruction if result is not zero

LFSR Move literal to file pointed to by FSR

MOVF Z, N Move file f

MOVFF Move any file to any file

MOVLB Move literal to BSR (Bank Select Register)

MULLW Multiply literal with WREG

MULWF Multiply WREG with file

NEGF C, DC, Z, OV, N 2’s complement, toggles sign of 8-bit signed data

POP Discard top of stack, decrement stack pointer

PUSH Increment stack pointer, copy PC to top of stack

RCALL Call subroutine at offset

RESET ALL Reset controller

RLNCF Z, N Rotate left without using carry bit

RRNCF Z, N Rotate right without using carry bit

SETF Set all bits of file

SUBFWB C, DC, Z, OV, N WREG - f with borrow (carry)

SUBWFB C, DC, Z, OV, N f - WREG with borrow (carry)

TBLRD Read byte from table in program memory

TBLWT Write byte to table in program memory

TSTFSZ Test file, skip next instruction if file=0
DS00716A-page 12 Preliminary  1999 Microchip Technology Inc.

AN716

00716a.book Page 13 Monday, September 27, 1999 12:04 PM
NOTES:
 1999 Microchip Technology Inc. Preliminary DS00716A-page 13

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

	Introduction
	Oscillator Operation
	Oscillator Modes
	Clock Switching
	Instruction Changes
	RAM
	Program Memory
	Instructions with $
	RETLW Tables
	Tables in Program Memory
	Table Reads
	Steps for Table Reads
	Code for Table Reads
	Interrupts
	Interrupt Pins
	Interrupt Handling Registers
	Interrupt Priority
	Return Address Stack
	Fast Register Stack
	Resets
	Power�On Reset
	Brown�Out Reset
	MCLR
	WDT
	Stack Over/Underflow
	RESET Instruction
	Timer0
	Timer1
	Timer2
	Timer3
	Capture/Compare/PWM
	A/D
	USART
	SSP
	SPI Mode
	I2C Mode
	Master Mode
	Slave General Call Support
	Conclusion
	WORLDWIDE SALES AND SERVICE

