
© 2005 Microchip Technology Inc. DS33014J

MPASM™ Assembler,
MPLINK™ Object Linker,

MPLIB™ Object Librarian
User’s Guide

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
DS33014J-page ii
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
© 2005 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Table of Contents
Preface ... 1

PICmicro Language Tools and MPLAB IDE .. 9

Part 1 – MPASM Assembler

Chapter 1. MPASM Assembler Overview
1.1 Introduction ... 21
1.2 MPASM Assembler Defined ... 21
1.3 How MPASM Assembler Helps You .. 21
1.4 Assembler Migration Path .. 22
1.5 Assembler Compatibility Issues ... 22
1.6 Assembler Operation .. 22
1.7 Assembler Input/Output Files ... 24

Chapter 2. Assembler Interfaces
2.1 Introduction ... 31
2.2 MPLAB IDE Interface ... 31
2.3 Windows Interface .. 32
2.4 Command Shell Interface ... 33
2.5 Command Line Interface .. 35
2.6 Troubleshooting .. 37

Chapter 3. Expression Syntax and Operation
3.1 Introduction ... 39
3.2 Text Strings .. 39
3.3 Reserved Words and Section Names .. 41
3.4 Numeric Constants and Radix .. 41
3.5 Arithmetic Operators and Precedence ... 42

Chapter 4. Directives
4.1 Introduction ... 45
4.2 Directives by Type .. 45
4.3 access_ovr – Begin an Object File Overlay Section in Access

RAM (PIC18 MCUs) ... 48
4.4 __badram – Identify Unimplemented RAM .. 48
4.5 __badrom – Identify Unimplemented ROM ... 49
4.6 bankisel – Generate Indirect Bank Selecting

Code (PIC12/16 MCUs) .. 50
4.7 banksel – Generate Bank Selecting Code ... 52
4.8 cblock – Define a Block of Constants ... 54
4.9 code – Begin an Object File Code Section ... 56
© 2005 Microchip Technology Inc. DS33014J-page iii

Assembler/Linker/Librarian User’s Guide
4.10 code_pack – Begin an Object File Packed Code
Section (PIC18 MCUs) ... 57

4.11 __config – Set Processor Configuration Bits .. 58
4.12 config – Set Processor Configuration Bits (PIC18 MCUs) 59
4.13 constant – Declare Symbol Constant .. 60
4.14 da – Store Strings in Program Memory (PIC12/16 MCUs) 61
4.15 data – Create Numeric and Text Data ... 62
4.16 db – Declare Data of One Byte .. 65
4.17 de – Declare EEPROM Data Byte ... 67
4.18 #define – Define a Text Substitution Label .. 68
4.19 dt – Define Table (PIC12/16 MCUs) ... 70
4.20 dw – Declare Data of One Word .. 70
4.21 else – Begin Alternative Assembly Block to if Conditional 71
4.22 end – End Program Block ... 71
4.23 endc – End an Automatic Constant Block .. 72
4.24 endif – End Conditional Assembly Block .. 72
4.25 endm – End a Macro Definition ... 73
4.26 endw – End a while Loop ... 73
4.27 equ – Define an Assembler Constant ... 74
4.28 error – Issue an Error Message ... 74
4.29 errorlevel – Set Message Level ... 76
4.30 exitm – Exit from a Macro ... 78
4.31 expand – Expand Macro Listing ... 80
4.32 extern – Declare an Externally Defined Label .. 80
4.33 fill – Specify Program Memory Fill Value .. 82
4.34 global – Export a Label .. 84
4.35 idata – Begin an Object File Initialized Data Section 85
4.36 idata_acs – Begin an Object File Initialized Data Section

in Access RAM (PIC18 MCUs) ... 86
4.37 __idlocs – Set Processor ID Locations ... 87
4.38 if – Begin Conditionally Assembled Code Block 88
4.39 ifdef – Execute If Symbol has Been Defined ... 90
4.40 ifndef – Execute If Symbol has not Been Defined 91
4.41 #include – Include Additional Source File ... 92
4.42 list – Listing Options .. 93
4.43 local – Declare Local Macro Variable .. 94
4.44 macro – Declare Macro Definition .. 96
4.45 __maxram – Define Maximum RAM Location .. 97
4.46 __maxrom – Define Maximum ROM Location ... 98
4.47 messg – Create User Defined Message ... 98
4.48 noexpand – Turn off Macro Expansion ... 100
4.49 nolist – Turn off Listing Output .. 100
4.50 org – Set Program Origin ... 100
4.51 page – Insert Listing Page Eject ... 103
4.52 pagesel – Generate Page Selecting Code (PIC10/12/16 MCUs) 103
DS33014J-page iv © 2005 Microchip Technology Inc.

Table of Contents
4.53 pageselw – Generate Page Selecting Code Using WREG Commands
(PIC10/12/16 MCUs) .. 105

4.54 processor – Set Processor Type ... 106
4.55 radix – Specify Default Radix ... 106
4.56 res – Reserve Memory ... 107
4.57 set – Define an Assembler Variable ... 109
4.58 space – Insert Blank Listing Lines .. 110
4.59 subtitle – Specify Program Subtitle ... 110
4.60 title – Specify Program Title ... 111
4.61 udata – Begin an Object File Uninitialized Data Section 111
4.62 udata_acs – Begin an Object File Access Uninitialized

Data Section (PIC18 MCUs) ... 112
4.63 udata_ovr – Begin an Object File Overlaid Uninitialized

Data Section ... 114
4.64 udata_shr – Begin an Object File Shared Uninitialized Data Section

(PIC12/16 MCUs) ... 116
4.65 #undefine – Delete a Substitution Label ... 117
4.66 variable – Declare Symbol Variable ... 118
4.67 while – Perform Loop While Condition is True 119

Chapter 5. Assembler Examples, Tips and Tricks
5.1 Introduction ... 123
5.2 Example of Displaying Count on Ports ... 124
5.3 Example of PORTB Toggle and Delay Routines .. 125
5.4 Example of Calculations with Variables and Constants 132
5.5 Example of a 32-Bit Delay Routine .. 134
5.6 Example of SPI™ Emulated in Firmware ... 136
5.7 Example of Hexadecimal to ASCII Conversion .. 138
5.8 Other Sources of Examples ... 139
5.9 Tips and Tricks ... 139

Chapter 6. Relocatable Objects
6.1 Introduction ... 143
6.2 Header Files ... 143
6.3 Program Memory .. 144
6.4 Low, High and Upper Operands ... 144
6.5 RAM Allocation ... 147
6.6 Configuration Bits and ID Locations ... 148
6.7 Accessing Labels From Other Modules ... 148
6.8 Paging and Banking Issues .. 149
6.9 Generating the Object Module ... 150
6.10 Code Example .. 150
© 2005 Microchip Technology Inc. DS33014J-page v

Assembler/Linker/Librarian User’s Guide
Chapter 7. Macro Language
7.1 Introduction ... 153
7.2 Macro Syntax ... 153
7.3 Macro Directives Defined ... 154
7.4 Macro Definition ... 154
7.5 Macro Invocation .. 154
7.6 Macro Code Examples ... 155

Chapter 8. Errors, Warnings, Messages, and Limitations
8.1 Introduction ... 157
8.2 Assembler Errors .. 157
8.3 Assembler Warnings .. 163
8.4 Assembler Messages ... 166
8.5 Assembler Limitations .. 168

Part 2 – MPLINK Object Linker

Chapter 9. MPLINK Linker Overview
9.1 Introduction ... 171
9.2 MPLINK Linker Defined .. 171
9.3 How MPLINK Linker Works .. 171
9.4 How MPLINK Linker Helps You ... 172
9.5 Linker Platforms Supported .. 172
9.6 Linker Operation ... 172
9.7 Linker Input/Output Files .. 173

Chapter 10. Linker Interfaces
10.1 Introduction ... 179
10.2 MPLAB IDE Interface ... 179
10.3 Command Line Interface .. 179
10.4 Command Line Example .. 180

Chapter 11. Linker Scripts
11.1 Introduction ... 181
11.2 Standard Linker Scripts .. 181
11.3 Linker Script Command Line Information ... 182
11.4 Linker Script Caveats ... 183
11.5 Memory Region Definition .. 183
11.6 Logical Section Definition ... 185
11.7 STACK Definition ... 186

Chapter 12. Linker Processing
12.1 Introduction ... 187
12.2 Linker Processing Overview ... 187
12.3 Linker Allocation Algorithm ... 188
12.4 Relocation Example ... 189
12.5 Initialized Data .. 190
12.6 Reserved Section Names ... 190
DS33014J-page vi © 2005 Microchip Technology Inc.

Table of Contents
Chapter 13. Sample Applications
13.1 Introduction ... 191
13.2 How to Build the Sample Applications .. 191
13.3 Sample Application 1 – Modifying the Linker Script 193
13.4 Sample Application 2 – Placing Code and Setting CONFIG Bits 195
13.5 Sample Application 3 – Using a Boot Loader ... 198
13.6 Sample Application 4 – Configuring External Memory 208

Chapter 14. Errors, Warnings and Common Problems
14.1 Introduction ... 213
14.2 Linker Parse Errors .. 213
14.3 Linker Errors ... 215
14.4 Linker Warnings ... 220
14.5 Library File Errors ... 220
14.6 COFF File Errors .. 221
14.7 COFF To COD Conversion Errors ... 222
14.8 COFF To COD Converter Warnings .. 222
14.9 COD File Errors .. 222
14.10 Hex File Errors ... 222
14.11 Common Problems ... 223

Part 3 – MPLIB Object Librarian

Chapter 15. MPLIB Librarian Overview
15.1 Introduction ... 227
15.2 What is MPLIB Librarian ... 227
15.3 How MPLIB Librarian Works .. 227
15.4 How MPLIB Librarian Helps You .. 228
15.5 Librarian Operation ... 228
15.6 Librarian Input/Output Files .. 229

Chapter 16. Librarian Interfaces
16.1 Introduction ... 231
16.2 MPLAB IDE Interface ... 231
16.3 Command Line Options .. 232
16.4 Command Line Examples and Tips ... 232

Chapter 17. Errors
17.1 Introduction ... 233
17.2 Librarian Parse Errors .. 233
17.3 Library File Errors ... 233
17.4 COFF File Errors .. 233
© 2005 Microchip Technology Inc. DS33014J-page vii

Assembler/Linker/Librarian User’s Guide
Part 4 – Appendices

Appendix A. Instruction Sets
A.1 Introduction .. 237
A.2 Key to 12/14-Bit Instruction Width Instruction Sets 237
A.3 12-Bit Instruction Width Instruction Set .. 239
A.4 14-Bit Instruction Width Instruction Set .. 240
A.5 12-Bit/14-Bit Instruction Width Pseudo-Instructions 242
A.6 Key to PIC18 Device Instruction Set .. 243
A.7 PIC18 Device Instruction Set ... 244
A.8 PIC18 Device Extended Instruction Set ... 248

Appendix B. Useful Tables
B.1 Introduction .. 249
B.2 ASCII Character Set ... 249
B.3 Hexadecimal to Decimal Conversion ... 250

Glossary ...251

Index ...265

Worldwide Sales and Service ...270
DS33014J-page viii © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN
USER’S GUIDE
Preface
INTRODUCTION

This chapter contains general information that will be useful to know before using
Assembler/Linker/Librarian User’s Guide. Items discussed include:

• Document Layout
• Conventions Used
• Recommended Reading
• The Microchip Web Site
• Development Systems Customer Change Notification Service
• Customer Support

DOCUMENT LAYOUT

This document describes how to use the MPASM™ assembler, the MPLINK™ object
linker, and the MPLIB™ object librarian to develop code for PICmicro® microcontroller
(MCU) applications. All of these tools can work within the MPLAB® Integrated
Development Environment (IDE). For a detailed discussion about basic MPLAB IDE
functions, refer to MPLAB IDE documentation.

PICmicro Language Tools Overview – provides on overview of how to use all of the
tools in this manual together under the MPLAB IDE. This is how most developers will
use these tools.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.
© 2005 Microchip Technology Inc. DS33014J-page 1

Assembler/Linker/Librarian User’s Guide
MPASM Assembler

• Chapter 1: MPASM Assembler Overview – describes what the
MPASM assembler is, what it does and how it works with other tools.

• Chapter 2: Assembler Interfaces – reviews how to use the MPASM assembler
with MPLAB IDE and describes how to use the assembler on the command line,
in a command shell interface or in a Windows shell interface.

• Chapter 3: Expression Syntax and Operation – provides guidelines for using
complex expressions in MPASM assembler source files.

• Chapter 4: Directives – lists each MPASM assembler directive alphabetically
and describes the directive in detail, with examples.

• Chapter 5: Assembler Examples, Tips and Tricks – provides examples of how
to use the MPASM assembler directives together in applications.

• Chapter 6: Relocatable Objects – describes how to use the MPASM assembler
in conjunction with MPLINK object linker.

• Chapter 7: Macro Language – describes how to use the MPASM assembler’s
built-in macro processor.

• Chapter 8: Errors, Warnings, Messages and Limitations – contains a
descriptive list of the errors, warnings, and messages generated by the
MPASM assembler, as well as tool limitations.

MPLINK Object Linker

• Chapter 9: MPLINK Linker Overview – describes what the MPLINK object linker
is, what it does and how it works with other tools.

• Chapter 10: Linker Interfaces – reviews how to use the MPLINK linker with
MPLAB IDE and describes how to use the linker on the command line.

• Chapter 11: Linker Scripts – discusses how to generate and use linker scripts to
control linker operation.

• Chapter 12: Linker Processing – describes how the linker processes files.
• Chapter 13: Sample Applications – provides examples of how to use the linker

to create applications.
- Sample Application 1 – explains how to find and use template files and how

to modify the linker script file.
- Sample Application 2 – explains how to place program code in different

memory regions, how to place data tables in ROM memory and how to set
configuration bits in C.

- Sample Application 3 – explains how to partition memory for a boot loader
and how to compile code that will be loaded into external RAM and executed.

- Sample Application 4 – explains how to create a new linker script memory
section, how to declare external memory through #pragma code directive
and how to access external memories using C pointers.

• Chapter 14: Errors, Warnings and Common Problems – contains a descriptive
list of the errors and warnings generated by the MPLINK linker, as well as
common problems and tool limitations.
DS33014J-page 2 © 2005 Microchip Technology Inc.

Preface
MPLIB Object Librarian

• Chapter 15: MPLIB Librarian Overview – describes what the MPLIB object
librarian is, what it does and how it works with other tools.

• Chapter 16: Librarian Interfaces – reviews how to use the MPLIB librarian with
MPLAB IDE and describes how to use the librarian on the command line.

• Chapter 17: Errors – contains a descriptive list of the errors generated by the
MPLIB librarian.

Appendices

• Appendix A: Instruction Sets – lists PICmicro MCU device instruction sets.
• Appendix B: Useful Tables – provides some useful tables for code development.

- ASCII Character Set – lists the ASCII Character Set.
- Hexadecimal to Decimal Conversions – shows how to convert from

hexadecimal to decimal numbers.
© 2005 Microchip Technology Inc. DS33014J-page 3

Assembler/Linker/Librarian User’s Guide
CONVENTIONS USED

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ’A’

Italic Courier A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mpasmwin [options]
file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

DS33014J-page 4 © 2005 Microchip Technology Inc.

Preface
RECOMMENDED READING

This documentation describes how to use Assembler/Linker/Librarian User’s Guide.
Other useful documents are listed below. The following Microchip documents are
available and recommended as supplemental reference resources.

Readme Files – readme.asm and readme.lkr

For the latest tool information and known issues, see the MPASM assembler readme
file (readme.asm) or the MPLINK object linker/MPLIB object librarian readme file
(readme.lkr). These ASCII text files may be found in the Readme folder of the
MPLAB IDE installation directory.

On-line Help Files

Comprehensive help files are available for MPASM assembler and MPLINK object
linker/MPLIB object librarian.

MPASM™ and MPLINK™ PICmicro® Quick Reference Card (DS30400)

A quick reference card (QRC) is available containing an MPASM assembler directive
language summary, MPASM assembler radix types supported, MPLINK object linker
command line options, MPLIB object librarian usage format and examples, PIC18
device special function register files, ASCII character set, and PICmicro MCU
instruction set summaries.

C Compiler User’s Guides and Libraries

The MPLINK linker and MPLIB librarian also work with the Microchip C language
compiler MPLAB C18 for PIC18 devices. For more information on MPLAB C18, see:

• MPLAB® C18 C Compiler Getting Started (DS51295)
• MPLAB® C18 C Compiler User's Guide (DS51288)
• MPLAB® C18 C Compiler Libraries (DS51297)
• PIC18 Configuration Settings Addendum (DS51537)

MPLAB IDE Documentation

Information on the integrated development environment MPLAB IDE may be found in:

• MPLAB® IDE Quick Chart (DS51410) – Chart for quick look-ups.
• MPLAB® IDE User’s Guide (DS51519) – Comprehensive user’s guide.
• MPLAB® IDE Quick Start (DS51281) – Chapters 1 and 2 of the user’s guide.
• On-line help file – The most up-to-date information on MPLAB IDE.

PICmicro MCU Data Sheets and Application Notes

Data sheets contain information on device operation, as well as electrical
specifications. Applications notes demonstrate how various PICmicro MCUs may be
used. Find both of these types of documents for your device on the Microchip website.
© 2005 Microchip Technology Inc. DS33014J-page 5

Assembler/Linker/Librarian User’s Guide
THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers;
MPASM™ and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30
object linkers; and MPLIB™ and MPLAB LIB30 object librarians.

• Emulators – The latest information on Microchip in-circuit emulators.This
includes the MPLAB ICE 2000 and MPLAB ICE 4000.

• In-Circuit Debuggers – The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® II device programmers and the
PICSTART® Plus and PICkit™ 1 development programmers.
DS33014J-page 6 © 2005 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Preface
CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com
© 2005 Microchip Technology Inc. DS33014J-page 7

http://support.microchip.com

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 8 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

PICmicro Language Tools and MPLAB IDE
INTRODUCTION

The MPASM assembler, the MPLINK object linker and the MPLIB object librarian are
typically used together under MPLAB IDE to provide GUI development of application
code for PICmicro MCU devices. The operation of these PICmicro MCU language tools
with MPLAB IDE is discussed here.

Topics covered in this chapter:

• MPLAB IDE and Tools Installation
• MPLAB IDE Setup
• MPLAB IDE Projects
• Project Setup
• Project Example

MPLAB IDE AND TOOLS INSTALLATION

In order to use the PICmicro MCU language tools with MPLAB IDE, you must first install
MPLAB IDE. The latest version of this free software is available at our website
(http://www.microchip.com) or from any sales office (back cover). When you install
MPLAB IDE, you will be installing the MPASM assembler, the MPLINK object linker and
the MPLIB object librarian as well.

By default, the language tools will be installed in the directory:

• C:\Program Files\Microchip\MPASM Suite

The executables for each tool will be in this directory:

• MPASM Assembler – mpasmwin.exe
• MPLINK Object Linker – mplink.exe
• MPLIB Object Librarian – mplib.exe

All device include (header) files are also in this directory. For more on these files, see
MPASM assembler documentation.

All device linker script files are in the LKR subdirectory. For more on these files, see
MPLINK object linker documentation.

Code examples and template files are also included in subdirectories for your use.
Template files are provided for absolute code (Code) and relocatable code (Object)
development.
© 2005 Microchip Technology Inc. DS33014J-page 9

Assembler/Linker/Librarian User’s Guide
MPLAB IDE SETUP

Once MPLAB IDE is installed on your PC, check the settings below to ensure that the
language tools are properly recognized under MPLAB IDE.

1. From the MPLAB IDE menu bar, select Project>Set Language Tool Locations to
open a dialog to set/check language tool executable location.

FIGURE 1: SET LANGUAGE TOOL LOCATIONS

2. In the dialog, under “Registered Tools”, select “Microchip MPASM Toolsuite”.
Click the “+” to expand.

3. Select “Executables”. Click the “+” to expand.
4. Select “MPASM Assembler (mpasmwin.exe)”. Under “Location”, a path to the

executable file should be displayed. If no path is displayed, enter one or browse
to the location of this file. The default location is listed in “MPLAB IDE and Tools
Installation”.

5. Select “MPLINK Object Linker (mplink.exe)”. Under “Location”, a path to the
executable file should be displayed. If no path is displayed, enter one or browse
to the location of this file. The default location is listed in “MPLAB IDE and Tools
Installation”.

6. Select “MPLIB Object Librarian (mplib.exe)”. Under “Location”, a path to the
executable file should be displayed. If no path is displayed, enter one or browse
to the location of this file. The default location is listed in “MPLAB IDE and Tools
Installation”.

7. Click OK.
DS33014J-page 10 © 2005 Microchip Technology Inc.

PICmicro Language Tools and MPLAB IDE
MPLAB IDE PROJECTS

A project in MPLAB IDE is a group of files needed to build an application, along with
their associations to various build tools. Below is a generic MPLAB IDE project.

FIGURE 2: PROJECT RELATIONSHIPS

MPLINK™ linker

MPLAB C18MPASM™

source
files

object
files

library file
LIBRARIAN &

output
files

main.cprog.asm

main.oprog.o

math.lib

prog.hex prog.mapprog.lstprog.codprog.cof

ASSEMBLER/
COMPILER

LINKER &

SIMULATORS
EMULATORS

PROGRAMMERS

MPLAB® IDE Project

precomp.o

assembler

DEBUGGERS

device.lkr

MPLIB™ librarian

linker script file
© 2005 Microchip Technology Inc. DS33014J-page 11

Assembler/Linker/Librarian User’s Guide
In this MPLAB IDE project, an assembly source file (prog.asm) is shown with its
associated assembler (MPASM assembler). MPLAB IDE will use this information to
generate the object file prog.o for input into the MPLINK object linker. For more
information on the assembler, see the MPASM assembler documentation.

The C source file main.c is also shown with its associated MPLAB C18 C compiler.
MPLAB IDE will use this information to generate an object file (main.o) for input into
the MPLINK object linker. For more information on the compiler, see the
MPLAB C18 C compiler documentation listed in Recommended Reading.

In addition, precompiled object files (precomp.o) may be included in a project, with no
associated tool required. For example, MPLAB C18 requires the inclusion of a
precompiled standard code module c018i.o. For more information on available
Microchip precompiled object files, see the MPLAB C18 C compiler documentation.

Some library files (math.lib) are available with the compiler. Others may be built
using the librarian tool (MPLIB object librarian). For more information on the librarian,
see the MPLIB librarian documentation. For more information on available Microchip
libraries, see the MPLAB C18 C compiler documentation.

The object files, along with library files and a linker script file (device.lkr) are used
to generate the project output files via the linker (MPLINK object linker). For more
information on linker script files and using the linker, see the MPLINK linker
documentation.

The main output file generated by the MPLINK linker is the hex file (prog.hex), used
by simulators, emulators, debuggers and programmers. For more information on linker
output files, see the MPLINK linker documentation.

For more on projects, and related workspaces, see MPLAB IDE documentation.
DS33014J-page 12 © 2005 Microchip Technology Inc.

PICmicro Language Tools and MPLAB IDE
PROJECT SETUP

To set up an MPLAB IDE project for the first time, it is advisable to use the built-in
Project Wizard (Project>Project Wizard). In this wizard, you will be able to select a
language toolsuite that uses MPASM assembler, e.g., the Microchip MPASM Toolsuite.
For more on the wizard, and MPLAB IDE projects, see MPLAB IDE documentation.

Once you have a project set up, you may then set up properties of the tools in
MPLAB IDE.

1. From the MPLAB IDE menu bar, select Project>Build Options>Project to open a
dialog to set/check project build options.

2. Click on the Tool tab to modify tool settings.
- Build Options Dialog, MPASM Assembler tab
- Build Options Dialog, MPLINK Linker tab
- Build Options Dialog, MPASM/C17/C18 Suite tab

Build Options Dialog, MPASM Assembler Tab

Select a category, and then set up assembler options. For additional options, see
Chapter 2. “Assembler Interfaces”.

General Category

Output Category

Note: MPASM assembler does not recognize include path information
specified in MPLAB IDE.

Generate Command Line

Disable case sensitivity The assembler will not distinguish between uppercase and
lowercase letters.
Note: Disabling case sensitivity will make all labels uppercase.

Extended mode Enable PIC18F extended instruction support.

Default Radix Set the default radix, either Hexadecimal, Decimal or Octal.

Macro Definitions Add macro directive definitions.

Restore Defaults Restore tab default settings.

Use Alternate Settings

Text Box Enter options in a command-line (non-GUI) format.

Generate Command Line

Diagnostics level Select to display errors only; errors and warnings; or errors,
warnings and messages. These will be shown in the Output
window.

Generate
cross-reference file

Create an cross-reference file. A cross-reference file contains a
listing of all symbols used in the assembly code.

Hex file format (for
single-file assemblies)

When assembling a single file, the assembler may be used to
generate a hex file. Choose the format here.
When assembling multiple files, the assembler generates object
files which must be linked with the linker to generate a hex file.
Choose the hex file format for the linker in this case.

Restore Defaults Restore tab default settings.

Use Alternate Settings

Text Box Enter options in a command-line (non-GUI) format.
© 2005 Microchip Technology Inc. DS33014J-page 13

Assembler/Linker/Librarian User’s Guide
Build Options Dialog, MPLINK Linker Tab

Select a category, and then set up linker options. For additional options, see
Chapter 10. “Linker Interfaces”.

All Options Category

Build Options Dialog, MPASM/C17/C18 Suite Tab

Determine if the files in the project will be built for normal output using the linker
(hex file, etc.) or if they will be build into a library using the MPLIB librarian (lib file).

PROJECT EXAMPLE

In this example, you will create an MPLAB IDE project with multiple assembly files.
Therefore, you will need to use the MPASM assembler and the MPLINK linker to create
the final output executable (.hex) file.

• Run the Project Wizard
• Set Build Options
• Build the Project
• Build Errors
• Output Files
• Further Development

Run the Project Wizard

In MPLAB IDE, select Project>Project Wizard to launch the wizard. Click Next> at the
Welcome screen.

1. Select PIC16F84A as the Device. Click Next> to continue.
2. Set up the language tools, if you haven’t already. Refer to “MPLAB IDE Setup”.

Click Next> to continue.
3. Enter “Example” for the name of the project. Then Browse to select a location for

your project. Click Next> to continue.

Generate Command Line

Hex file format Choose the linker hex file format or suppress output of the hex file.

Generate map file Create a map file. A map file provides information on the absolute
location of source code symbols in the final output. It also provides
information on memory use, indicating used/unused memory.

Suppress COD file
generation

Do not generate a COD file.
Note: The COD file name, including the path, has a 62 character
limit. The COFF file does not have this limitation.
Note: This will also cause the linker list file to not be generated.
This does not affect assembler list file generation.

Output file root Enter a root directory for saving output files.

Restore Defaults Restore tab default settings.

Use Alternate Settings

Text Box Enter options in a command-line (non-GUI) format.
DS33014J-page 14 © 2005 Microchip Technology Inc.

PICmicro Language Tools and MPLAB IDE
4. Add files to the project.
a) In the file listing box on the left of the dialog, find the following directory:

C:\Program Files\Microchip\MPASM Suite\EXAMPLE.
Select Example.asm and Example2.asm. Click Add>> to add these files
to the project.

b) In the file listing box on the left of the dialog, find the following directory:
C:\Program Files\Microchip\MPASM Suite\LKR
Select 16f84a.lkr. Click Add>> to add this file to the project.

c) Check the checkbox next to each file to make a copy of each file in the project
directory. (This will preserve the original files.) Click Next> to continue.

5. Review the summary of information. If anything is in error, use <Back to go back
and correct the entry. Click Finish to complete the project creation and setup.

Once the Project Wizard has completed, the Project window should contain the project
tree. The workspace name is Example.mcw, the project name is Example.mcp, and
all the project files are listed under their respective file type. For more on workspaces
and projects, see MPLAB IDE documentation.

FIGURE 3: EXAMPLE PROJECT TREE

Set Build Options

Select Project>Build Options>Project to open the Build Options dialog.

1. Click on the MPASM Assembler tab. For “Categories: General”, check that the
“Default Radix” is set to “Hexadecimal”. For “Categories: Output”, check that the
“Diagnostics level” includes all errors, warnings and messages. Then check the
checkbox for “Generate cross-reference file”.

2. Click on the MPLINK Linker tab. For “Categories: (All Options)”, check that the
“Hex File Format” is set to “INHX32”. Then check the checkbox for “Generate
map file”.

3. Click on the MPASM/C17/C18 Suite tab. For “Categories: (All Options)”, check
that the “Build normal target (invoke MPLINK)” is selected.

4. Click OK on the bottom of the dialog to accept the build options and close the
dialog.

5. Select Project>Save Project to save the current configuration of the Example
project.
© 2005 Microchip Technology Inc. DS33014J-page 15

Assembler/Linker/Librarian User’s Guide
Build the Project

Select Project>Build All to build the project.

The Output window should appear at the end of the build and display the build results.

FIGURE 4: OUTPUT WINDOW – BUILD TAB

Build Errors

If the build did not complete successfully, check these items:

1. Review the previous steps in this example. Make sure you have set up the
language tools correctly and have all the correct project files and build options.

2. If you modified the sample source code, examine the Build tab of the Output win-
dow for syntax errors in the source code. If you find any, double-click on the error
to go to the source code line that contains that error. Correct the error, and then
try to build again.

Output Files

View the project output files by opening the files in MPLAB IDE.

1. Select File>Open. In the Open dialog, find the project directory.
2. Under “Files of type” select “All files (*.*)” to see all project files.
3. Select “Example.xrf”. Click Open to view the assembler cross-reference file for

Example.asm in an MPLAB IDE editor window. For more on this file, see
Section 1.7.6 “Cross Reference File (.xrf)”.

4. Repeat steps 1 and 2. Select “Example.map”. Click Open to view the linker map
file in an MPLAB IDE editor window. For more on this file, see
Section 9.7.8 “Map File (.map)”.

5. Repeat steps 1 and 2. Select “Example.lst”. Click Open to view the linker listing
file in an MPLAB IDE editor window. When MPASM assembler is used with
MPLINK linker, the listing file is generated by the linker. For more on this file, see
Section 9.7.7 “Listing File (.lst)”.

6. Repeat steps 1 and 2. Notice that there is only one hex file, “Example.hex”. This
is the primary output file, used by various debug tools. You do not view this file
for debugging; use instead View>Program Memory or
View>Disassembly Listing.

Note: You also may right-click on the project name, “Example.mcp”, in the project
tree and select “Build All” from the pop-up menu.
DS33014J-page 16 © 2005 Microchip Technology Inc.

PICmicro Language Tools and MPLAB IDE
Further Development

Usually, your application code will not build without errors. Therefore, you will need a
debug tool to help you develop your code. Using the output files previously discussed,
several debug tools exist that work with MPLAB IDE to help you do this. You may
choose from simulators, in-circuit emulators or in-circuit debuggers, either
manufactured by Microchip Technology or third-party developers. Please see the
documentation for these tools to see how they can help you.

Once you have developed your code, you will want to program it into a device. Again,
there are several programmers that work with MPLAB IDE to help you do this. Please
see the documentation for these tools to see how they can help you.

For more information on using MPLAB IDE, consult the on-line help that comes with
this application or download printable documents from our website.
© 2005 Microchip Technology Inc. DS33014J-page 17

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 18 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Part 1 – MPASM Assembler
Chapter 1. MPASM Assembler Overview .. 29

Chapter 2. Assembler Interfaces ... 39

Chapter 3. Expression Syntax and Operation .. 47

Chapter 4. Directives .. 53

Chapter 5. Assembler Examples, Tips and Tricks ... 129

Chapter 6. Relocatable Objects ... 149

Chapter 7. Macro Language ... 159

Chapter 8. Errors, Warnings, Messages, and Limitations 163
© 2005 Microchip Technology Inc. DS33014J-page 19

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 20 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 1. MPASM Assembler Overview
1.1 INTRODUCTION

An overview of the MPASM assembler and its capabilities is presented.

Topics covered in this chapter:

• MPASM Assembler Defined
• How MPASM Assembler Helps You
• Assembler Migration Path
• Assembler Compatibility Issues
• Assembler Operation
• Assembler Input/Output Files

1.2 MPASM ASSEMBLER DEFINED

The MPASM assembler (the assembler) is a command-line or Windows-based PC
application that provides a platform for developing assembly language code for
Microchip's PICmicro microcontroller (MCU) families.

There are two executable versions of the assembler:

• The windows version (mpasmwin.exe). Use this version with MPLAB IDE, in a
stand-alone Windows application, or on the command line. This version is
available with MPLAB IDE or with the regular and demo version of the
MPLAB C18 C compiler. This is the recommended version.

• The command-line version (mpasm.exe). Use this version on the command line,
either from a command shell or directly on the command line. This version is
available with the regular and demo version of the MPLAB C18 C compiler.

The MPASM assembler supports all PICmicro MCU devices, as well as memory and
KeeLoq® secure data products from Microchip Technology Inc. (Some memory and
KeeLoq devices were not supported in MPLAB IDE after v5.70.40.)

1.3 HOW MPASM ASSEMBLER HELPS YOU

The MPASM assembler provides a universal solution for developing assembly code for
all of Microchip's PICmicro MCUs. Notable features include:

• MPLAB IDE Compatibility
• Command Line Interface
• Windows/Command Shell Interfaces
• Rich Directive Language
• Flexible Macro Language
© 2005 Microchip Technology Inc. DS33014J-page 21

Assembler/Linker/Librarian User’s Guide
1.4 ASSEMBLER MIGRATION PATH

Since the MPASM assembler is a universal assembler for all PICmicro MCU devices,
application code developed for the PIC16F877A can be translated into a program for
the PIC18F452. This may require changing the instruction mnemonics that are not the
same between the devices (assuming that register and peripheral usage were similar).
The rest of the directive and macro language will be the same.

1.5 ASSEMBLER COMPATIBILITY ISSUES

The MPASM assembler is compatible with the MPLAB IDE integrated development
environment (mpasmwin.exe version) and all Microchip PICmicro MCU development
systems currently in production.

The MPASM assembler supports a clean and consistent method of specifying radix
(see Section 3.4 “Numeric Constants and Radix”). You are encouraged to develop
using the radix and other directive methods described within this document, even
though certain older syntaxes may be supported for compatibility reasons.

1.6 ASSEMBLER OPERATION

The MPASM assembler can be used in two ways:

• To generate absolute code that can be executed directly by a microcontroller.
• To generate relocatable code that can be linked with other separately assembled

or compiled modules.

1.6.1 Generating Absolute Code

Absolute code is the default output from the MPASM assembler. This process is shown
below.

When a source file is assembled in this manner, all variables and routines used in the
source file must be defined within that source file, or in files that have been explicitly
included by that source file. If assembly proceeds without errors, a hex file will be
generated, containing the executable machine code for the target device. This file can
then be used with a debugger to test code execution or with a device programmer to
program the microcontroller.

code.hexMPASM™
Programmercode.asm MCU

assembler
DS33014J-page 22 © 2005 Microchip Technology Inc.

MPASM Assembler Overview
1.6.2 Generating Relocatable Code

The MPASM assembler also has the ability to generate a relocatable object module
that can be linked with other modules using Microchip's MPLINK linker to form the final
executable code. This method is very useful for creating reusable modules.

Related modules can be grouped and stored together in a library using Microchip's
MPLIB librarian. Required libraries can be specified at link time, and only the routines
that are needed will be included in the final executable.

Refer to Chapter 6. “Relocatable Objects” for more information on the differences
between absolute and relocatable object assembly.

MPASM™main.asm

MPASMmore.asm

MPLINK™ linker

main.o

more.o

main.hex
Programmer MCU

units.lib

assembler

assembler

units.lib

MPASM™unit1.asm

unit2.asm

unit3.asm

MPLIB™

unit1.o

unit2.o

unit3.o

assembler librarian

MPASM MPLIB
assembler librarian

MPASM MPLIB
assembler librarian
© 2005 Microchip Technology Inc. DS33014J-page 23

Assembler/Linker/Librarian User’s Guide
1.7 ASSEMBLER INPUT/OUTPUT FILES

These are the default file extensions used by the assembler and the associated utility
functions.

TABLE 1-1: INPUT FILES

TABLE 1-2: OUTPUT FILES

1.7.1 Source Code (.asm)

Assembly is a programming language you may use to develop the source code for your
application. The source code file may be created using any ASCII text file editor.

Your source code should conform to the following basic guidelines.

Each line of the source file may contain up to four types of information:

• Labels
• Mnemonics, Directives and Macros
• Operands
• Comments

The order and position of these are important. For ease of debugging, it is
recommended that labels start in column one and mnemonics start in column two or
beyond. Operands follow the mnemonic. Comments may follow the operands,
mnemonics or labels, and can start in any column. The maximum column width is 255
characters.

White space or a colon must separate the label and the mnemonic, and white space
must separate the mnemonic and the operand(s). Multiple operands must be
separated by commas.

White space is one or more spaces or tabs. White space is used to separate pieces of
a source line. White space should be used to make your code easier for people to read.
Unless within character constants, any white space means the same as exactly one
space.

Source Code (.asm) Default source file extension input to assembler.

Include File (.inc) Include (header) file.

Listing File (.lst) Default output extension for listing files generated by
assembler.

Error File (.err) Output extension from assembler for error files.

Hex File Formats (.hex, .hxl, .hxh) Output extension from assembler for hex files.

Cross Reference File (.xrf) Output extension from assembler for cross reference
files.

Symbol and Debug File (.cod) Output extension for the symbol and debug file.
For absolute code, this file will be generated by the
assembler.
For relocatable code, this file and a .coff file will be
generated by the MPLINK™ linker. See MPLINK linker
documentation for more details.

Object File (.o) Output extension from assembler for object files.

Note: Several example source code files are included free with MPLAB IDE.
DS33014J-page 24 © 2005 Microchip Technology Inc.

MPASM Assembler Overview
EXAMPLE 1-1: ABSOLUTE MPASM ASSEMBLER SOURCE CODE (SHOWS
MULTIPLE OPERANDS)

 list p=18f452
 #include p18f452.inc

Dest equ 0x0B ;Define constant

 org 0x0000 ;Reset vector
 goto Start

 org 0x0020 ;Begin program

Start
 movlw 0x0A
 movwf Dest

 bcf Dest, 3 ;This line uses 2 operands
 goto Start
 end

1.7.1.1 LABELS

A label is used to represent a line or group of code, or a constant value. It is needed for
branching instructions (Example 1-1).

Labels should start in column 1. They may be followed by a colon (:), space, tab or the
end of line. Labels must begin with an alpha character or an under bar (_) and may
contain alphanumeric characters, the under bar and the question mark.

Labels must not:

• begin with two leading underscores, e.g., __config.
• begin with a leading underscore and number, e.g., _2NDLOOP.
• be an assembler reserved word (see Section 3.3 “Reserved Words and

Section Names”).

Labels may be up to 32 characters long. By default they are case sensitive, but case
sensitivity may be overridden by a command-line option (/c). If a colon is used when
defining a label, it is treated as a label operator and not part of the label itself.

1.7.1.2 MNEMONICS, DIRECTIVES AND MACROS

Mnemonics tell the assembler what machine instructions to assemble. For example,
addition (add), branches (goto) or moves (movwf). Unlike labels that you create
yourself, mnemonics are provided by the assembly language. Mnemonics are not case
sensitive.

Directives are assembler commands that appear in the source code but are not usually
translated directly into opcodes. They are used to control the assembler: its input,
output, and data allocation. Directives are not case sensitive.

Macros are user defined sets of instructions and directives that will be evaluated in-line
with the assembler source code whenever the macro is invoked.

Labels

Mnemonics
Directives
Macros Operands Comments

↓ ↓ ↓ ↓
© 2005 Microchip Technology Inc. DS33014J-page 25

Assembler/Linker/Librarian User’s Guide
Assembler instruction mnemonics, directives and macro calls should begin in column
two or greater. If there is a label on the same line, instructions must be separated from
that label by a colon, or by one or more spaces or tabs.

1.7.1.3 OPERANDS

Operands give information to the instruction on the data that should be used and the
storage location for the instruction.

Operands must be separated from mnemonics by one or more spaces, or tabs. Multiple
operands must be separated by commas.

1.7.1.4 COMMENTS

Comments are text explaining the operation of a line or lines of code.

The MPASM assembler treats anything after a semicolon as a comment. All characters
following the semicolon are ignored through the end of the line. String constants
containing a semicolon are allowed and are not confused with comments.

1.7.2 Include File (.inc)

An assembler include, or header, file is any file containing valid assembly code.
Usually, the file contains device-specific register and bit assignments. This file may be
“included” in the code so that it may be reused by many programs.

As an example, to add the standard header file for the PIC18F452 device to your
assembly code, use:

#include p18f452.inc

Standard header files are located in:

C:\Program Files\Microchip\MPASM Suite

1.7.3 Listing File (.lst)

An MPASM assembler listing file provides a mapping of source code to object code. It
also provides a list of symbol values, memory usage information and the number of
errors, warnings and messages generated. This file may be viewed in MPLAB IDE by:

1. Selecting File>Open to launch the Open dialog
2. Selecting “List files (*.lst)” from the “Files of type” drop-down list
3. Locating the desired list file
4. Clicking on the list file name
5. Clicking Open

Both the MPASM assembler and the MPLINK linker can generate listing files. For
information on the MPLINK linker listing file, see 9.7.7 “Listing File (.lst)”.

To prevent assembler list file generation, use the /l- option or use with MPLINK linker
(the linker list file overwrites the assembler list file). Set the size of tabs in the list file
using the /t option.

EXAMPLE 1-2: ABSOLUTE MPASM ASSEMBLER LISTING FILE

The product name and version, the assembly date and time and the page number
appear at the top of every page.

The first column contains the base address in memory where the code will be placed.
The second column displays the 32-bit value of any symbols created with the set, equ,
variable, constant or cblock directives. The third column is reserved for the
machine instruction. This is the code that will be executed by the PICmicro MCU. The
fourth column lists the associated source file line number for this line. The remainder
of the line is reserved for the source code line that generated the machine code.
DS33014J-page 26 © 2005 Microchip Technology Inc.

MPASM Assembler Overview
Errors, warnings, and messages are embedded between the source lines and pertain
to the following source line. Also, there is a summary at the end of the listing.

The symbol table lists all symbols defined in the program.

The memory usage map gives a graphical representation of memory usage. ‘X’ marks
a used location and ‘-’ marks memory that is not used by this object. The map also
displays program memory usage. The memory map is not printed if an object file is
generated.

MPASM 03.70 Released SOURCE.ASM 4-5-2004 15:40:00
PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 list p=18f452
 00002 #include p18f452.inc
 00001 LIST
 00002 ; P18F452.INC Standard Header File, Version 1.4..
 00845 LIST
 0000000B 00003 Dest equ 0x0B
 00004
000000 00005 org 0x0000
000000 EF10 F000 00006 goto Start
000020 00007 org 0x0020
000020 0E0A 00008 Start movlw 0x0A
000022 6E0B 00009 movwf Dest
000024 960B 00010 bcf Dest, 3 ;This line uses 2 op..
000026 EF10 F000 00011 goto Start
 00012 end

MPASM 03.70 Released SOURCE.ASM 4-5-2004 15:40:00 PAGE 2

SYMBOL TABLE
 LABEL VALUE

A 00000000
ACCESS 00000000
 : :
_XT_OSC_1H 000000F9
__18F452 00000001

MPASM 03.70 Released SOURCE.ASM 4-5-2004 15:40:00 PAGE 12

MEMORY USAGE MAP ('X' = Used, '-' = Unused)

0000 : XXXX------------ ---------------- XXXXXXXXXX------ ----------------

All other memory blocks unused.

Program Memory Bytes Used: 14
Program Memory Bytes Free: 32754

Note: Due to page width restrictions, some comments have been shortened, indi-
cated by “..” Also, some symbol table listings have been removed, indicated
by “:” See the standard header, p18f452.inc, for a complete list of
symbols.
© 2005 Microchip Technology Inc. DS33014J-page 27

Assembler/Linker/Librarian User’s Guide
Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed

1.7.4 Error File (.err)

The MPASM assembler, by default, generates an error file. This file can be useful when
debugging your code. The MPLAB IDE will display the error information in the Output
window. The format of the messages in the error file is:

type[number] file line description

For example:

Error[113] C:\PROG.ASM 7 : Symbol not previously defined (start)

The error file may contain any number of MPASM assembler errors, warnings and
messages. For more on these, see Chapter 8. “Errors, Warnings, Messages, and
Limitations”.

To prevent error file generation, use the /e- option.

1.7.5 Hex File Formats (.hex, .hxl, .hxh)

The MPASM assembler and MPLINK linker are capable of producing ASCII text hex
files in different formats.

This file format is useful for transferring PICmicro MCU series code to Microchip
programmers and third party PICmicro MCU programmers.

1.7.5.1 INTEL HEX FORMAT

This format produces one 8-bit hex file with a low byte, high byte combination. Since
each address can only contain 8 bits in this format, all addresses are doubled.

Each data record begins with a 9-character prefix and ends with a 2-character
checksum. Each record has the following format:

:BBAAAATTHHHH....HHHCC

where:

Format Name Format Type File Extension Use

Intel Hex Format INHX8M .hex 8-bit core device programmers

Intel Split Hex Format INHX8S .hxl, .hxh odd/even programmers

Intel Hex 32 Format INHX32 .hex 16-bit core device programmers

BB A two digit hexadecimal byte count representing the number of data bytes that will
appear on the line.

AAAA A four digit hexadecimal address representing the starting address of the data
record.

TT A two digit record type that will always be ‘00’ except for the end-of-file record, which
will be ‘01’.

HH A two digit hexadecimal data byte, presented in low byte/high byte combinations.

CC A two digit hexadecimal checksum that is the two's complement of the sum of all
preceding bytes in the record.
DS33014J-page 28 © 2005 Microchip Technology Inc.

MPASM Assembler Overview
EXAMPLE 1-3: INHX8M

file_name.hex
:1000000000000000000000000000000000000000F0
:0400100000000000EC
:100032000000280040006800A800E800C80028016D
:100042006801A9018901EA01280208026A02BF02C5
:10005200E002E80228036803BF03E803C8030804B8
:1000620008040804030443050306E807E807FF0839
:06007200FF08FF08190A57
:00000001FF

1.7.5.2 INTEL SPLIT HEX FORMAT

The split 8-bit file format produces two output files: .hxl and .hxh. The format is the
same as the normal 8-bit format, except that the low bytes of the data word are stored
in the .hxl file, and the high bytes of the data word are stored in the .hxh file, and the
addresses are divided by two. This is used to program 16-bit words into pairs of 8-bit
EPROMs, one file for low byte, one file for high byte.

EXAMPLE 1-4: INHX8S

file_name.hxl
:0A0000000000000000000000000000F6
:1000190000284068A8E8C82868A989EA28086ABFAA
:10002900E0E82868BFE8C8080808034303E8E8FFD0
:03003900FFFF19AD
:00000001FF
file_name.hxh
:0A0000000000000000000000000000F6
:1000190000000000000000010101010102020202CA
:100029000202030303030304040404050607070883
:0300390008080AAA
:00000001FF

1.7.5.3 INTEL HEX 32 FORMAT

The extended 32-bit address hex format is similar to the hex 8 format, except that the
extended linear address record is also output to establish the upper 16 bits of the data
address. This is mainly used for 16-bit core devices since their addressable program
memory exceeds 64 kbytes.

Each data record begins with a 9-character prefix and ends with a 2-character
checksum. Each record has the following format:

:BBAAAATTHHHH....HHHCC

where:

BB A two digit hexadecimal byte count representing the number of data bytes that will
appear on the line.

AAAA A four digit hexadecimal address representing the starting address of the data
record.

TT A two digit record type:
00 – Data record
01 – End of File record
02 – Segment Address record
04 – Linear Address record

HH A two digit hexadecimal data byte, presented in low byte/high byte
combinations.

CC A two digit hexadecimal checksum that is the two's complement of the sum of all
preceding bytes in the record.
© 2005 Microchip Technology Inc. DS33014J-page 29

Assembler/Linker/Librarian User’s Guide
1.7.6 Cross Reference File (.xrf)

A cross reference file contains a listing of all symbols used in the assembly code. The
file has the following format:

• The symbols are listed in the “Label” column, sorted by name.
• The “Type” column defines the type of symbol. A list of “Label Types” is provided

at the end of the file.
• The “File Name” column lists the names of the files that use the symbol.
• The “Source File References” column lists the line number of the corresponding

file in the “File Name” column where the symbol is defined/referenced. An asterisk
means a definition.

To prevent cross-reference file generation, use the /x- option.

1.7.7 Symbol and Debug File (.cod)

A COD file is used by MPLAB IDE to debug absolute assembly code.

For absolute code generation, the MPASM assembler produces a .cod file for
debugging.

For relocatable code generation, the MPASM assembler and the MPLINK linker are
used together and the linker produces both a .cod and a .coff file for debugging.

To suppress COD file generation when using the linker, either:

• use the /w option on the command line.
• select “Suppress COD file generation” on the MPLINK Linker tab of the Build

Options dialog (Project>Build Options>Project) in MPLAB IDE.

1.7.8 Object File (.o)

The assembler creates a relocatable object file from source code. This object file does
not yet have addresses resolved and must be linked before it can be used as an
executable.

To generate a file that will execute after being programmed into a device, see
1.7.5 “Hex File Formats (.hex, .hxl, .hxh)”.

To prevent object file generation, use the /o- option.

Note: The COD file name, including the path, has a 62 character limit. The COFF
file does not have this limitation.
DS33014J-page 30 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 2. Assembler Interfaces
2.1 INTRODUCTION

There are several interfaces with which you may use the MPASM assembler,
depending on the assembler version. These interfaces are discussed here.

When MPLAB IDE is installed, the windowed version of the MPASM assembler
(mpasmwin.exe) is also installed. In addition, the windowed version and the
command-line version (mpasm.exe) of the assembler may be obtained with the regular
and demo version of the MPLAB C18 C compiler.

Topics covered in this chapter:

• MPLAB IDE Interface
• Windows Interface
• Command Shell Interface
• Command Line Interface
• Troubleshooting

2.2 MPLAB IDE INTERFACE

The MPASM assembler is most commonly used with the MPLINK linker in an
MPLAB IDE project to generate relocatable code. For more information on this use, see
“PICmicro Language Tools and MPLAB IDE”.

The assembler may also be used in MPLAB IDE to generate absolute code (without
the use of the MPLINK linker or MPLAB IDE project) by using the QuickBuild feature.
To do this:

1. From the MPLAB IDE menu bar, select Project>Set Language Tool Locations to
open a dialog to set/check language tool executable location.

2. In the dialog, under Registered Tools, select “Microchip MPASM Toolsuite”. Click
the “+” to expand.

3. Select Executables. Click the “+” to expand.
4. Select MPASM Assembler (mpasmwin.exe). Under Location, a path to the

mpasmwin.exe file should be displayed. If no path is displayed, enter one or
browse to the location of this file. By default, it is located at:

C:\Program Files\Microchip\MPASM Suite\mpasmwin.exe

5. Click OK.
6. From the MPLAB IDE menu bar, select Project>Quickbuild to assemble the

specified asm file using the MPASM assembler.
© 2005 Microchip Technology Inc. DS33014J-page 31

Assembler/Linker/Librarian User’s Guide
2.3 WINDOWS INTERFACE

MPASM assembler for Windows provides a graphical interface for setting assembler
options. It is invoked by executing mpasmwin.exe in Windows Explorer or from a
command prompt.

FIGURE 2-1: MPASM™ ASSEMBLER WINDOWS SHELL INTERFACE

Select a source file by typing in the name or using the Browse button. Set the various
options as described below. (Default options are read from the source file.) Then click
Assemble to assemble the source file.

Note: When MPASM assembler for Windows is invoked through MPLAB IDE, this
options screen is not available. Use the MPASM Assembler tab of the
Build Options dialog in MPLAB IDE (Project>Build Options>Project) to set
options.

Option Description

Radix Override any source file radix settings.
Reference: Section 4.42 “list – Listing Options”,
Section 4.55 “radix – Specify Default Radix”,
Section 3.4 “Numeric Constants and Radix”

Warning Level Override any source file message level settings.
Reference: Section 4.47 “messg – Create User Defined
Message”

Hex Output Override any source file hex file format settings.
Reference: Section 1.7.5 “Hex File Formats (.hex, .hxl, .hxh)”

Generated Files Enable/disable various output files.
Reference: Section 1.7 “Assembler Input/Output Files”

Case Sensitivity Enable/disable case sensitivity. If enabled, the assembler will
distinguish between uppercase and lowercase letters.

Tab Size Set the list file tab size.
Reference: Section 1.7.3 “Listing File (.lst)”

Macro Expansion Override any source file macro expansion settings.
Reference: Section 4.31 “expand – Expand Macro Listing”
DS33014J-page 32 © 2005 Microchip Technology Inc.

Assembler Interfaces
2.4 COMMAND SHELL INTERFACE

The MPASM assembler command shell interface displays a screen in Text Graphics
mode. It is invoked by executing mpasm.exe in Windows Explorer.

On this screen, you can fill in the name of the source file you want to assemble and
other available options.

FIGURE 2-2: TEXT GRAPHICS MODE DISPLAY

Type the name of your source file after “Source File”. The name can include a DOS
path and wild cards. If you use wild cards (one of * or ?), a list of all matching files is
displayed for you to select from. To automatically enter *.ASM in this field, press <Tab>.

For more information on this file type, see Section 1.7.1 “Source Code (.asm)”.

Set the various options as described below.

Processor Override any source file processor settings.

Extended Mode Enable PIC18F extended instruction support.

Extra Options Any additional command-line options.
Reference: Section 2.5 “Command Line Interface”

Save Settings on Exit Save these settings in mplab.ini. They will be used the next
time you run mpasmwin.exe.

Option Description

Option Description

Processor Type If you do not specify the processor in your source file, use this field
to select the processor. Enter the field by using the arrow keys,
then toggle through the supported processors by pressing
<Enter>.

Error File An error file (sourcename.err) is created by default. For more
information on this file type, see Section 1.7.4 “Error File (.err)”.
To turn the error file off, use the keyboard arrow keys to move to
the field and press <Enter> to change it to “No”. The error filename
can be changed by pressing the <Tab> key to move to the shaded
area and typing a new name. Wild cards are not allowed in the
error filename.
© 2005 Microchip Technology Inc. DS33014J-page 33

Assembler/Linker/Librarian User’s Guide
Cross Reference File A cross reference file (sourcename.xrf) is not generated by
default. For more information on this file type, see
Section 1.7.6 “Cross Reference File (.xrf)”.
To create a cross reference file, use the keyboard arrow keys to
move to the field and press <Enter> to change it to “Yes”. The
cross reference filename can be changed by pressing the <Tab>
key to move to the shaded area and typing a new name. Wild
cards are not allowed in the cross reference filename.

Listing File A listing file (sourcename.lst) is created by default. For more
information on this file type, see Section 1.7.3 “Listing File
(.lst)”.
To turn the listing file off, use the keyboard arrow keys to move to
the field and press <Enter> to change it to “No”. The listing
filename can be changed by pressing the <Tab> key to move to
the shaded area and typing a new name. Wild cards are not
allowed in the listing filename.

Hex Dump Type Set this value to generate the desired hex file format. For more
information on this format, see Section 1.7.5 “Hex File Formats
(.hex, .hxl, .hxh)”.
Changing this value is accomplished by moving to the field with the
keyboard arrow keys and pressing the <Enter> key to scroll
through the available options. To change the hex filename, press
the <Tab> key to move the shaded area, and type in the new
name.

Assemble to Object File Enabling this option will generate the relocatable object code that
can be input to the linker and suppress generation of the hex file.
For more information on this file type, see Section 1.7.8 “Object
File (.o)”.
To turn the object file on, use the keyboard arrow keys to move to
the field and press <Enter> to change it to “Yes”. The object
filename can be changed by pressing the <Tab> key to move to
the shaded area and typing a new name. Wild cards are not
allowed in the object filename.

Option Description
DS33014J-page 34 © 2005 Microchip Technology Inc.

Assembler Interfaces
2.5 COMMAND LINE INTERFACE

MPASM assembler can be invoked through the command line interface (command
prompt) as follows:

mpasmwin [/option1.../optionN] filename

or

mpasm [/option1.../optionN] filename

where

/option - refers to one of the command line options

filename - is the file being assembled

For example, if test.asm exists in the current directory, it can be assembled with
following command:

mpasmwin /e /l test.asm

If the source filename is omitted, the appropriate shell interface is invoked, i.e.,

• mpasmwin – a Windows interface is displayed, which includes a Help button
• mpasm – an interactive text interface is displayed (same as mpasm /?)

Option Default Description

/? N/A Display the assembler help screen (mpasm.exe
only).

/ahex-format INHX32* Generate absolute .cod and .hex output directly
from assembler, where hex-format is one of
{INHX8M | INHX8S | INHX32}.
See 1.7.5 “Hex File Formats (.hex, .hxl, .hxh)” for
more information.

/c On Enable/Disable case sensitivity. If enabled, the
assembler will distinguish between uppercase and
lowercase letters.

/dlabel[=value] N/A Define a text string substitution, i.e., assign value to
label.

/e[+|-|path] On Enable/Disable/Set Path for error file.
/e Enable
/e+ Enable
/e- Disable
/e path Enable/specify path
See Section 1.7.4 “Error File (.err)” for more
information.

/h N/A Display the assembler help screen (mpasm.exe
only).

/l[+|-|path] On Enable/Disable/Set Path for list file
/l Enable
/l+ Enable
/l- Disable
/l path Enable/specify path
See Section 1.7.3 “Listing File (.lst)” for more
information.

/m[+|-] On Enable/Disable macro expansion.
See Section 4.31 “expand – Expand Macro
Listing” for more information.
© 2005 Microchip Technology Inc. DS33014J-page 35

Assembler/Linker/Librarian User’s Guide
/o[+|-|path] Off Enable/Disable/Set Path for object file.
/o Enable
/o+ Enable
/o- Disable
/o path Enable/specify path
See Section 1.7.8 “Object File (.o)” for more
information.

/pprocessor_type None Set the processor type, where processor_type is
a PICmicro® MCU device, e.g., PIC18F452.

/q[+|-] Off Enable/Disable quiet mode (suppress screen
output).

/rradix Hex Defines default radix, where radix is one of {HEX |
DEC | OCT }.
See Section 4.42 “list – Listing Options” or
Section 4.55 “radix – Specify Default Radix” for
more information.

/t 8 Set the size of tabs in the list file.
See Section 1.7.3 “Listing File (.lst)” for more
information.

/wvalue 0 Set message level, where value is one of {0|1|2}.
0 all messages
1 errors and warnings
2 errors only
See Section 4.47 “messg – Create User Defined
Message” for more information.

/x[+|-|path] Off Enable/Disable/Set Path for cross reference file.
/x Enable
/x+ Enable
/x- Disable
/x path Enable/specify path
See Section 1.7.6 “Cross Reference File (.xrf)” for
more information.

/y[+|-] Disabled Enable/Disable extended instruction set.
/y Enable
/y+ Enable
/y- Disable
Can only be enabled for processors which support
the extended instruction set and for the generic
processor PIC18CXXX. /y- overrides LIST
PE=type directive (see
Section 4.42 “list – Listing Options”).

* Default is dependent on processor selected.

Option Default Description
DS33014J-page 36 © 2005 Microchip Technology Inc.

Assembler Interfaces
2.6 TROUBLESHOOTING

If you are using mpasm.exe and get a message saying that you have run out of
environment space, use Microsoft Windows Internet Explorer to select the mpasm.exe
file in the MPLAB IDE installation directory, and click on the right mouse button to bring
up the Properties dialog.

FIGURE 2-3: PROPERTIES DIALOG – MPASM.EXE

Increase the size of the Initial Environment. Usually a setting of 2048 will suffice, but if
you have a lot of applications that set variables and add to your path statement in your
AUTOEXEC.BAT file, you may need to make it larger.
© 2005 Microchip Technology Inc. DS33014J-page 37

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 38 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 3. Expression Syntax and Operation
3.1 INTRODUCTION

Various expression formats, syntax, and operations used by MPASM assembler are
described here.

Topics covered in this chapter:

• Text Strings
• Reserved Words and Section Names
• Numeric Constants and Radix
• Arithmetic Operators and Precedence

3.2 TEXT STRINGS

A “string” is a sequence of any valid ASCII character (of the decimal range of 0 to 127)
enclosed by double quotes. It may contain double quotes or null characters.

The way to get special characters into a string is to escape the characters, preceding
them with a backslash ‘\’ character. The same escape sequences that apply to strings
also apply to characters.

Strings may be of any length that will fit within a 255 column source line. If a matching
quote mark is found, the string ends. If none is found before the end of the line, the
string will end at the end of the line. While there is no direct provision for continuation
onto a second line, it is generally no problem to use a second dw directive for the next
line.

The dw directive will store the entire string into successive words. If a string has an odd
number of characters (bytes), the dw and data directives will pad the end of the string
with one byte of zero (00).

If a string is used as a literal operand, it must be exactly one character long, or an error
will occur.
© 2005 Microchip Technology Inc. DS33014J-page 39

Assembler/Linker/Librarian User’s Guide
3.2.1 Escape Characters

The assembler accepts the ANSI ‘C’ escape sequences to represent certain special
control characters:

3.2.2 Code Examples

See the examples below for the object code generated by different statements
involving strings.

7465 7374 696E dw “testing output string one\n”
6720 6F75 7470
7574 2073 7472
696E 6720 6F6E
650A
 #define str “testing output string two”
B061 movlw “a”
7465 7374 696E data “testing first output string”
6720 6669 7273
7420 6F75 7470
7574 2073 7472
696E 6700

TABLE 3-1: ANSI ‘C’ ESCAPE SEQUENCES

Escape
Character

Description
Hex

Value

\a Bell (alert) character 07

\b Backspace character 08

\f Form feed character 0C

\n New line character 0A

\r Carriage return character 0D

\t Horizontal tab character 09

\v Vertical tab character 0B

\\ Backslash 5C

\? Question mark character 3F

\' Single quote (apostrophe) 27

\” Double quote character 22

\0OO Octal number (zero, Octal digit, Octal digit)

\xHH Hexadecimal number
DS33014J-page 40 © 2005 Microchip Technology Inc.

Expression Syntax and Operation
3.3 RESERVED WORDS AND SECTION NAMES

You may not use the following words for label, constant or variable names:

• Directives (see Chapter 4. “Directives”).
• Instructions (see Appendix A. “Instruction Sets”).

In addition, the assembler has the following reserved section names:

TABLE 3-2: RESERVED SECTION NAMES

3.4 NUMERIC CONSTANTS AND RADIX

MPASM assembler supports the following radix forms for constants: hexadecimal,
decimal, octal, binary, and ASCII. The default radix is hexadecimal; the default radix
determines what value will be assigned to constants in the object file when a radix is
not explicitly specified by a base descriptor.

Constants can be optionally preceded by a plus or minus sign. If unsigned, the value is
assumed to be positive.

Section Name Purpose

.access_ovr Default section name for access_ovr directive.

.code Default section name for code directive.

.idata

.idata_acs
Default section names for idata and idata_acs directives,
respectively.

.udata

.udata_acs

.udata_ovr

.udata_shr

Default section names for udata, udata_acs, udata_ovr and
udata_shr directives, respectively.

Note: The radix for numeric constants can be made different from the default radix
specified with the directives radix or list r=. Also, allowable default
radices are limited to hexadecimal, decimal and octal.

Note: Intermediate values in constant expressions are treated as 32-bit unsigned
integers. Whenever an attempt is made to place a constant in a field for
which it is too large, a truncation warning will be issued.
© 2005 Microchip Technology Inc. DS33014J-page 41

Assembler/Linker/Librarian User’s Guide
The following table presents the various radix specifications:

3.5 ARITHMETIC OPERATORS AND PRECEDENCE

Arithmetic operators may be used with directives and their variables as specified in the
table below.

The operator order in the table also corresponds to its precedence, where the first
operator has the highest precedence and the last operator has the lowest precedence.
Precedence refers to the order in which operators are executed in a code statement.

TABLE 3-3: RADIX SPECIFICATIONS – MPASM™ ASSEMBLER/MPLINK™
LINKER

Note Type Syntax Example

1 Binary B’binary_digits’ B’00111001’

2 Octal O’octal_digits’ O’777’

3 Decimal D’digits’
.digits

D’100’
.100

4 Hexadecimal H’hex_digits’
0xhex_digits

H’9f’
0x9f

5 ASCII A’character’
’character’

A’C’
’C’

Note 1: A binary integer is ‘b’ or ‘B’ followed by one or more of the binary digits ‘01’ in single
quotes.

2: An octal integer is ‘o’ or ‘O’ followed by one or more of the octal digits ‘01234567’ in
single quotes.

3: A decimal integer is ‘d’ or ‘D’ followed by one or more decimal digits ‘0123456789’
in single quotes. Or, a decimal integer is ‘.’ followed by one or more decimal digits
‘0123456789’.

4: A hexadecimal integer is ‘h’ or ‘H’ followed by one or more hexadecimal digits
‘0123456789abcdefABCDEF’ in single quotes. Or, a hexadecimal integer is ‘0x’ or
‘0X’ followed by one or more hexadecimal digits ‘0123456789abcdefABCDEF’.

5: An ASCII character is ‘a’ or ‘A’ followed by one character (see Section B.2 “ASCII
Character Set”) in single quotes. Or, an ASCII character is one character in single
quotes.

Note: These operators cannot be used with program variables. They are for use
with directives only.
DS33014J-page 42 © 2005 Microchip Technology Inc.

Expression Syntax and Operation
TABLE 3-4: ARITHMETIC OPERATORS AND PRECEDENCE

Operator Example

$ Current/Return program counter goto $ + 3

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Length + 1) * 256

! Item NOT (logical complement) if ! (a == b)

- Negation (2’s complement) -1 * Length

~ Complement flags = ~flags

low(1) Return low byte of address movlw low CTR_Table

high(1) Return high byte of address movlw high CTR_Table

upper(1) Return upper byte of address movlw upper CTR_Table

* Multiply a = b * c

/ Divide a = b / c

% Modulus entry_len = tot_len % 16

+ Add tot_len = entry_len * 8 + 1

- Subtract entry_len = (tot - 1) / 8

<< Left shift flags = flags << 1

>> Right shift flags = flags >> 1

>= Greater or equal if entry_idx >= num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

== Equal to if entry_idx == num_entries

= Not equal to if entry_idx != num_entries

& Bitwise AND flags = flags & ERROR_BIT

^ Bitwise exclusive OR flags = flags ^ ERROR_BIT

| Bitwise inclusive OR flags = flags | ERROR_BIT

&& Logical AND if (len == 512) && (b == c)

|| Logical OR if (len == 512) || (b == c)

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_index -= 1

*= Multiply, set equal entry_index *= entry_length

/= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

|= Inclusive OR, set equal flags |= ERROR_FLAG

^= Exclusive OR, set equal flags ^= ERROR_FLAG

++ Increment(2) i ++

-- Decrement(2) i --

Note 1: This precedence is the same for the low, high and upper operands which apply to
sections. See Section 6.4 “Low, High and Upper Operands” for more
information.

2: These operators can only be used on a line by themselves; they cannot be
embedded within other expression evaluations.
© 2005 Microchip Technology Inc. DS33014J-page 43

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 44 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 4. Directives
4.1 INTRODUCTION

Directives are assembler commands that appear in the source code but are not usually
translated directly into opcodes. They are used to control the assembler: its input,
output and data allocation.

Many of the assembler directives have alternate names and formats. These may exist
to provide backward compatibility with previous assemblers from Microchip and to be
compatible with individual programming practices. If portable code is desired, it is
recommended that programs be written using the specifications contained here.

Information on individual directives includes syntax, description, usage, and related
directives, as well as simple and, in some cases, expanded examples of use. In most
cases, simple examples may be assembled and run by adding an end statement.
Expanded examples may be assembled and run “as is” to give an demonstration of an
application using the directive(s).

Individual directives may be found alphabetically (in the following sections) or by type
(Section 4.2 “Directives by Type”).

4.2 DIRECTIVES BY TYPE

There are six basic types of directives provided by the assembler:

1. Control Directives
2. Conditional Assembly Directives
3. Data Directives
4. Listing Directives
5. Macro Directives
6. Object File Directives

Note: Although MPASM assembler is often used with MPLINK object linker,
MPASM assembler directives are not supported in MPLINK linker scripts.
See MPLINK object linker documentation for more information on linker
options to control listing and hex file output.

Note: Directives are not case-sensitive, e.g., cblock may be executed as
CBLOCK, cblock, Cblock, etc.
© 2005 Microchip Technology Inc. DS33014J-page 45

Assembler/Linker/Librarian User’s Guide
4.2.1 Control Directives

Control directives control how code is assembled.

• #define – Define a Text Substitution Label.. p. 68
• #include – Include Additional Source File .. p. 92
• #undefine – Delete a Substitution Label... p. 117
• constant – Declare Symbol Constant ... p. 60
• end – End Program Block.. p. 71
• equ – Define an Assembler Constant .. p. 74
• org – Set Program Origin .. p. 100
• processor – Set Processor Type .. p. 106
• radix – Specify Default Radix .. p. 106
• set – Define an Assembler Variable ... p. 109
• variable – Declare Symbol Variable... p. 118

4.2.2 Conditional Assembly Directives

Conditional assembly directives permit sections of conditionally assembled code.
These are not run-time instructions like their C language counterparts. They define
which code is assembled, not how the code executes.

• else – Begin Alternative Assembly Block to if Conditional..................... p. 71
• endif – End Conditional Assembly Block... p. 72
• endw – End a while Loop .. p. 73
• if – Begin Conditionally Assembled Code Block...................................... p. 88
• ifdef – Execute If Symbol has Been Defined.. p. 90
• ifndef – Execute If Symbol has not Been Defined.................................. p. 91
• while – Perform Loop While Condition is True... p. 119

4.2.3 Data Directives

Data directives control the allocation of memory and provide a way to refer to data
items symbolically, i.e., by meaningful names.

• __badram – Identify Unimplemented RAM ... p. 48
• __badrom – Identify Unimplemented ROM... p. 49
• __config – Set Processor Configuration Bits .. p. 58
• config – Set Processor Configuration Bits (PIC18 MCUs) p. 59
• __idlocs – Set Processor ID Locations .. p. 87
• __maxram – Define Maximum RAM Location ... p. 97
• __maxrom – Define Maximum ROM Location ... p. 98
• cblock – Define a Block of Constants .. p. 54
• da – Store Strings in Program Memory (PIC12/16 MCUs) p. 61
• data – Create Numeric and Text Data .. p. 62
• db – Declare Data of One Byte .. p. 65
• de – Declare EEPROM Data Byte ... p. 67
• dt – Define Table (PIC12/16 MCUs).. p. 70
• dw – Declare Data of One Word... p. 70
• endc – End an Automatic Constant Block ... p. 72
• fill – Specify Program Memory Fill Value .. p. 82
• res – Reserve Memory ... p. 107
DS33014J-page 46 © 2005 Microchip Technology Inc.

Directives
4.2.4 Listing Directives

Listing directives control the MPASM assembler listing file format. These directives
allow the specification of titles, pagination, and other listing control. Some listing
directives also control how code is assembled.

• error – Issue an Error Message...p. 74
• errorlevel – Set Message Level..p. 76
• list – Listing Options ...p. 93
• messg – Create User Defined Message...p. 98
• nolist – Turn off Listing Output ...p. 100
• page – Insert Listing Page Eject ..p. 103
• space – Insert Blank Listing Lines...p. 110
• subtitle – Specify Program Subtitle ...p. 110
• title – Specify Program Title...p. 111

4.2.5 Macro Directives

Macro directives control the execution and data allocation within macro body
definitions.

• endm – End a Macro Definition...p. 73
• exitm – Exit from a Macro...p. 78
• expand – Expand Macro Listing ..p. 80
• local – Declare Local Macro Variable ..p. 94
• macro – Declare Macro Definition..p. 96
• noexpand – Turn off Macro Expansion..p. 100

4.2.6 Object File Directives

Object file directives are used only when creating an object file.

• access_ovr – Begin an Object File Overlay Section in Access
RAM (PIC18 MCUs) ...p. 56

• bankisel – Generate Indirect Bank Selecting Code (PIC12/16 MCUs)...p. 50
• banksel – Generate Bank Selecting Code ...p. 52
• code – Begin an Object File Code Section ..p. 56
• code_pack – Begin an Object File Packed Code
• Section (PIC18 MCUs) ...p. 65
• extern – Declare an Externally Defined Label ...p. 80
• global – Export a Label..p. 84
• idata – Begin an Object File Initialized Data Sectionp. 85
• idata_acs – Begin an Object File Initialized Data Section
• in Access RAM (PIC18 MCUs) ...p. 94
• pagesel – Generate Page Selecting Code (PIC10/12/16 MCUs)p. 103
• pageselw – Generate Page Selecting Code Using WREG Commands

(PIC10/12/16 MCUs) ..p. 105
• udata – Begin an Object File Uninitialized Data Section...........................p. 111
• udata_acs – Begin an Object File Access Uninitialized Data

Section (PIC18 MCUs) ...p. 120
• udata_ovr – Begin an Object File Overlaid Uninitialized Data Section....p. 114
• udata_shr – Begin an Object File Shared Uninitialized Data

Section (PIC12/16 MCUs) ..p. 124
© 2005 Microchip Technology Inc. DS33014J-page 47

Assembler/Linker/Librarian User’s Guide
4.3 access_ovr – BEGIN AN OBJECT FILE OVERLAY SECTION IN ACCESS
RAM (PIC18 MCUs)

4.3.1 Syntax

[label] access_ovr [RAM_address]

4.3.2 Description

This directive declares the beginning of a section of overlay data in Access RAM. If
label is not specified, the section is named .access_ovr. The starting address is
initialized to the specified address or will be assigned at link time if no address is
specified. The space declared by this section is overlaid by all other access_ovr
sections of the same name. No code can be placed by the user in this segment.

4.3.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

access_ovr is similar to udata_acs and udata_ovr, except that it declares a
PIC18 access-RAM, uninitialized-data section that can be overlaid with other overlay
access sections of the same name. Overlaying access sections allows you to reuse
access-bank data space.

4.3.4 See Also

extern global udata udata_ovr udata_acs

4.3.5 Simple Example

;The 2 indentically-named sections are overlayed in PIC18 Access RAM.
;In this example, u16a is overlaid with memory locations used
;by ua8 and u8b. u16b is overlaid with memory locations used
;by u8c and u8d.

myaoscn access_ovr
u8a: res 1
u8b: res 1
u8c: res 1
u8d: res 1

myaoscn access_ovr
u16a: res 2
u16b: res 2

4.4 __badram – IDENTIFY UNIMPLEMENTED RAM

4.4.1 Syntax

__badram expr[-expr][, expr[-expr]]

Note: badram is preceded by two underline characters.
DS33014J-page 48 © 2005 Microchip Technology Inc.

Directives
4.4.2 Description

The __maxram and __badram directives together flag accesses to unimplemented
registers. __badram defines the locations of invalid RAM addresses. This directive is
designed for use with the __maxram directive. A __maxram directive must precede
any __badram directive. Each expr must be less than or equal to the value specified
by __maxram. Once the __maxram directive is used, strict RAM address checking is
enabled, using the RAM map specified by __badram. To specify a range of invalid
locations, use the syntax minloc - maxloc.

4.4.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

__badram is not commonly used, as RAM and ROM details are handled by the include
files (*.inc) or linker script files (*.lkr).

4.4.4 See Also

__maxram

4.4.5 Simple Example

#include p16c622.inc
__maxram 0x0BF
__badram 0x07-0x09, 0x0D-0xE
__badram 0x87-0x89, 0x8D, 0x8F-0x9E
movwf 0x07 ; Generates invalid RAM warning
movwf 0x87 ; Generates invalid RAM warning
 ; and truncation message

4.5 __badrom – IDENTIFY UNIMPLEMENTED ROM

4.5.1 Syntax

__badrom expr[-expr][, expr[-expr]]

4.5.2 Description

The __maxrom and __badrom directives together flag accesses to unimplemented
registers. __badrom defines the locations of invalid ROM addresses. This directive is
designed for use with the __maxrom directive. A __maxrom directive must precede
any __badrom directive. Each expr must be less than or equal to the value specified
by __maxrom. Once the __maxrom directive is used, strict ROM address checking is
enabled, using the ROM map specified by __badrom. To specify a range of invalid
locations, use the syntax minloc - maxloc.

Specifically, a warning will be raised in the following circumstances:

• the target of a GOTO or CALL instruction is evaluated by the assembler to a
constant, and falls in a bad ROM region

• the target of an LGOTO or LCALL pseudo-op is evaluated by the assembler to a
constant, and falls in a bad ROM region

• a .hex file is being generated, and part of an instruction falls in a bad ROM region

Note: badrom is preceded by two underline characters.
© 2005 Microchip Technology Inc. DS33014J-page 49

Assembler/Linker/Librarian User’s Guide
4.5.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

__badrom is not commonly used, as RAM and ROM details are handled by the include
files (*.inc) or linker script files (*.lkr).

4.5.4 See Also

__maxrom

4.5.5 Simple Example

 #include p12c508.inc
 __maxrom 0x1FF
 __badrom 0x2 - 0x4, 0xA
org 0x5
 goto 0x2 ; generates a warning
 call 0x3 ; generates a warning
org 0xA
 movlw 5 ; generates a warning

4.6 bankisel – GENERATE INDIRECT BANK SELECTING CODE (PIC12/16
MCUs)

4.6.1 Syntax

bankisel label

4.6.2 Description

This directive is an instruction to the assembler or linker to generate the appropriate
bank selecting code for an indirect access of the register address specified by label.
Only one label should be specified. No operations can be performed on label. This
label must have been previously defined.

The linker will generate the appropriate bank selecting code. For 14-bit instruction
width (most PIC12/PIC16) devices, the appropriate bit set/clear instruction on the IRP
bit in the STATUS register will be generated. If the indirect address can be specified
without these instructions, no code will be generated.

4.6.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive may be used with 14-bit instruction width PICmicro devices. This
excludes 12-bit instruction width devices and PIC18 devices.

4.6.4 See Also

banksel pagesel

4.6.5 Simple Example

movlw Var1
movwf FSR ;Load the address of Var1 info FSR
bankisel Var1 ;Select the correct bank for Var1
 :
movwf INDF ;Indirectly write to Var1
DS33014J-page 50 © 2005 Microchip Technology Inc.

Directives
4.6.6 Application Example – bankisel

This program demonstrates the bankisel directive. This directive generates the
appropriate code to set/clear the IRP bit of the STATUS register for an indirect access.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

group1 udata 0x20 ;group1 data stored at locations
 ;starting at 0x20 (IRP bit 0).
 group1_var1 res 1 ;group1_var1 located at 0x20.
 group1_var2 res 1 ;group1_var2 located at 0x21.

group2 udata 0x120 ;group2 data stored at locations
 ;starting at 0x120 (IRP bit 1).
 group2_var1 res 1 ;group2_var1 located at 0x120.
 group2_var2 res 1 ;group2_var2 located at 0x121.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.

start
 movlw 0x20 ;This part of the code addresses
 movwf FSR ;variables group1_var1 &
 bankisel group1_var1 ;group1_var2 indirectly.
 clrf INDF
 incf FSR,F
 clrf INDF

 movwf FSR
 bankisel group2_var1
 clrf INDF
 incf FSR,F
 clrf INDF

 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 51

Assembler/Linker/Librarian User’s Guide
4.6.7 Application Example 2 – bankisel

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 bankisel EEADR ;This register is at location 100h
 ;in banks 2 or 3 so the IRP bit
 ;must be set. bankisel will set it
 ;but only where it is used.
 movlw EEADR,W ;Put the address of the register to
 ;be accessed indirectly into W.
 movwf FSR ;Copy address from W to FSR to set
 ;up pointer to EEADR.
 clrf INDF ;Clear EEADR through indirect
 ;accessing of EEADR through FSR/INDF.
 ;It would have cleared PIR2 (00Dh)
 ;if backisel had not been used to
 ;set the IRP bit.
 goto $;Prevents fall off end of code.
 end ;All code must have an end statement.

4.7 banksel – GENERATE BANK SELECTING CODE

4.7.1 Syntax

banksel label

4.7.2 Description

This directive is an instruction to the assembler and linker to generate bank selecting
code to set the bank to the bank containing the designated label. Only one label
should be specified. No operations can be performed on label. This label must have
been previously defined.

The linker will generate the appropriate bank selecting code. For 12-bit instruction
width (PIC10F, some PIC12/PIC16) devices, the appropriate bit set/clear instructions
on the FSR will be generated. For 14-bit instruction width (most PIC12/PIC16) devices,
bit set/clear instructions on the STATUS register will be generated. For PIC18 devices,
a movlb will be generated. If the device contains only one bank of RAM, no instructions
will be generated.

4.7.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive may be used with all PICmicro devices. This directive is not needed for
variables in access RAM (PIC18 devices).

4.7.4 See Also

bankisel pagesel

4.7.5 Simple Example

banksel Var1 ;Select the correct bank for Var1
movwf Var1 ;Write to Var1
DS33014J-page 52 © 2005 Microchip Technology Inc.

Directives
4.7.6 Application Example – banksel

This program demonstrates the banksel directive. This directive generates the
appropriate code to set/clear the RP0 and RP1 bits of the STATUS register.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

group1 udata 0x20 ;group1 data stored at locations
 ;starting at 0x20 (bank 0).
 group1_var1 res 1 ;group1_var1 located at 0x20.
 group1_var2 res 1 ;group1_var2 located at 0x21.

group2 udata 0xA0 ;group2 data stored at locations
 ;starting at 0xA0 (bank 1)
 group2_var1 res 1
 group2_var2 res 1

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.

start
 banksel group1_var1 ;This directive generates code
 ;to set/clear bank select bits
 ;RP0 & RP1 of STATUS register
 ;depending upon the address of
 ;group1_var1.

 clrf group1_var1
 clrf group1_var2

 banksel group2_var1 ;This directive generates code
 ;to set/clear bank select bits
 ;RP0 & RP1 of STATUS register
 ;depending upon the address of
 ;group2_var1.

 clrf group2_var1
 clrf group2_var2

 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 53

Assembler/Linker/Librarian User’s Guide
4.7.7 Application Example 2 – banksel

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 banksel TRISB ;Since this register is in bank 1,
 ;not default bank 0, banksel is
 ;used to ensure bank bits are correct.
 clrf TRISB ;Clear TRISB. Sets PORTB to outputs.
 banksel PORTB ;banksel used to return to bank 0,
 ;where PORTB is located.
 movlw 0x55 ;Set PORTB value.
 movwf PORTB
 goto $
 end ;All programs must have an end.

4.8 cblock – DEFINE A BLOCK OF CONSTANTS

4.8.1 Syntax

cblock [expr]
 label[:increment][,label[:increment]]
endc

4.8.2 Description

Defines a list of named sequential symbols. The purpose of this directive is to assign
address offsets to many labels. The list of names ends when an endc directive is
encountered.

expr indicates the starting value for the first name in the block. If no expression is
found, the first name will receive a value one higher than the final name in the previous
cblock. If the first cblock in the source file has no expr, assigned values start with
zero.

If increment is specified, then the next label is assigned the value of increment
higher than the previous label.

Multiple names may be given on a line, separated by commas.

cblock is useful for defining constants in program and data memory for absolute code
generation.

4.8.3 Usage

This directive is used in the following types of code: absolute. For information on types
of code, see Section 1.6 “Assembler Operation”.

Use this directive in place of or in addition to the equ directive. When creating
non-relocatable (absolute) code, cblock is often used to define variable address
location names. Do not use cblock or equ to define variable location names for
relocatable code.

4.8.4 See Also

endc equ
DS33014J-page 54 © 2005 Microchip Technology Inc.

Directives
4.8.5 Simple Example

cblock 0x20 ; name_1 will be assigned 20
 name_1, name_2 ; name_2, 21 and so on
 name_3, name_4 ; name_4 is assigned 23.
endc
cblock 0x30
 TwoByteVar: 0, TwoByteHigh, TwoByteLow ;TwoByteVar =0x30
 ;TwoByteHigh=0x30
 ;TwoByteLow =0x31
 Queue: QUEUE_SIZE
 QueueHead, QueueTail
 Double1:2, Double2:2
endc

4.8.6 Application Example – cblock/endc

This example shows the usage of CBLOCK and ENDC directives for defining constants
or variables in data memory space. The same directives can be used for program
memory space also.

The program calculates the perimeter of a rectangle. Length and width of the rectangle
will be stored in buffers addressed by length (22H) and width (23H). The calculated
perimeter will be stored in the double-precision buffer addressed by perimeter
(i.e., 20H and 21H).

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.
 CBLOCK 0x20 ;Define a block of variables
 ;starting at 20H in data memory.
 perimeter:2 ;The label perimeter is 2 bytes
 ;wide. Address 20H and 21H is
 ;assigned to the label perimeter.
 length ;Address 22H is assigned to the
 ;label length.
 width ;Address 23H is assigned to the
 ;label width.
 ENDC ;This directive must be supplied
 ;to terminate the CBLOCK list.
 clrf perimeter+1 ;Clear perimeter high byte
 ;at address 21H.
 movf length,w ;Move the data present in the
 ;register addressed by 'length'
 ;to 'w'
 addwf width,w ;Add data in 'w' with data in the
 ;register addressed by 'width'.
 ;STATUS register carry bit C
 ;may be affected.
 movwf perimeter ;Move 'w' to the perimeter low
 ;byte at address 20H. Carry bit
 ;is unaffected.
 rlf perimeter+1 ;Increment register 21H if carry
 ;was generated. Also clear carry
 ;if bit was set.
 rlf perimeter ;Multiply register 20H by 2.
 ;Carry bit may be affected.
 rlf perimeter+1 ;Again, increment register 21H
 ;if carry was generated.
 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 55

Assembler/Linker/Librarian User’s Guide
4.9 code – BEGIN AN OBJECT FILE CODE SECTION

4.9.1 Syntax

[label] code [ROM_address]

4.9.2 Description

This directive declares the beginning of a section of program code. If label is not
specified, the section is named .code. The starting address is initialized to the
specified address or will be assigned at link time if no address is specified.

4.9.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

There is no “end code” directive. The code of a section ends automatically when
another code or data section is defined or when the end of the file is reached.

4.9.4 See Also

extern code_pack global idata udata udata_acs udata_ovr udata_shr

4.9.5 Simple Example

RESET code 0x01FF
 goto START

4.9.6 Application Example – code

This program demonstrates the code directive, which declares the beginning of a
section of program code.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

Note: Two sections in a source file may not have the same name.
DS33014J-page 56 © 2005 Microchip Technology Inc.

Directives
PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 clrw
 goto $;Go to current line (loop here)

 CODE ;This is a relocatable code
 nop ;section since no address is
 ;specified. The section name will
 ;be, by default, .code.
 end

4.10 code_pack – BEGIN AN OBJECT FILE PACKED CODE
SECTION (PIC18 MCUs)

4.10.1 Syntax

[label] code_pack [ROM_address]

4.10.2 Description

This directive declares the beginning of a section of program code or ROM data where
a padding byte of zero is not appended to an odd number of bytes. If label is not
specified, the section is named .code. The starting address is initialized to
ROM_address or will be assigned at link time if no address is specified. If
ROM_address is specified, it must be word-aligned. If padded data is desired, use db.

4.10.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

This directive is commonly used when storing data into program memory (use with db)
or the EEPROM data memory (use with de) of a PIC18 device.

4.10.4 See Also

extern code global idata udata udata_acs udata_ovr udata_shr

4.10.5 Simple Example

 00001 LIST P=18Cxx
 00002
 00003 packed code_pack 0x1F0
0001F0 01 02 03 00004 DB 1, 2, 3
0001F3 04 05 00005 DB 4, 5
 00006
 00007 padded code
000000 0201 0003 00008 DB 1, 2, 3
000004 0504 00009 DB 4, 5
 00010
 00011 END

Note: Two sections in a source file may not have the same name
© 2005 Microchip Technology Inc. DS33014J-page 57

Assembler/Linker/Librarian User’s Guide
4.11 __config – SET PROCESSOR CONFIGURATION BITS

4.11.1 Syntax

Preferred:

__config expr
__config addr, expr (PIC18 Only)

Supported:

__fuses expr

4.11.2 Description

Sets the processor's configuration bits. Before this directive is used, the processor
must be declared through the command line, the list directive, the processor
directive or Configure>Select Device if using MPLAB IDE. Refer to individual PICmicro
microcontroller data sheets for a description of the configuration bits.

PIC10/12/16 MCUs

Sets the processor's configuration bits to the value described by expr.

PIC18 MCUs

For the address of a valid configuration byte specified by addr, sets the configuration
bits to the value described by expr.

Although this directive may be used to set configuration bits for PIC18 MCU devices, it
is recommended that you use the config directive (no underline characters). For
PIC18FXXJ devices, you must use the config directive.

4.11.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is placed in source code so that, when the code is assembled into a hex
file, the configuration values are preset to desired values in your application. This is
useful when giving your files to a third-party programming house, as this helps insure
the device is configured correctly when programmed.

Place configuration bit assignments at the beginning of your code. Use the
configuration options (names) in the standard include (*.inc) file. These names can
be bitwise ANDed together using & to declare multiple configuration bits.

4.11.4 See Also

config __idlocs list processor

Note: config is preceded by two underline characters.

Note: PIC18FXXJ devices do not support this directive. Use config directive (no
underline characters).

Note: Configuration bits must be listed in ascending order.

Note: Do not mix __config and config directives in the same code.
DS33014J-page 58 © 2005 Microchip Technology Inc.

Directives
4.11.5 Simple Examples

Example 1: PIC16 Devices

#include p16f877a.inc ;include file with config bit definitions
__config _HS_OSC & _WDT_OFF & _LVP_OFF ;Set oscillator to HS,
 ;watchdog time off,
 ;low-voltage prog. off

Example 2: PIC17X Devices

#include p17c42.inc ;include file with config bit definitions
__config 0xFFFF ;default configuration bits

Example 3: PIC18 Devices

#include p18c452.inc ;Include standard header file
 ;for the selected device.

;code protect disabled.
__CONFIG _CONFIG0, _CP_OFF_0

;Oscillator switch disabled, RC oscillator with OSC2
;as I/O pin.
__CONFIG _CONFIG1, _OSCS_OFF_1 & _RCIO_OSC_1

;Brown-OutReset enabled, BOR Voltage is 2.5v
__CONFIG _CONFIG2, _BOR_ON_2 & _BORV_25_2

;Watch Dog Timer enable, Watch Dog Timer PostScaler
;count - 1:128
__CONFIG _CONFIG3, _WDT_ON_3 & _WDTPS_128_3

;CCP2 pin Mux enabled
__CONFIG _CONFIG5, _CCP2MX_ON_5

;Stack over/underflow Reset enabled
__CONFIG _CONFIG6, _STVR_ON_6

4.12 config – SET PROCESSOR CONFIGURATION BITS (PIC18 MCUs)

4.12.1 Syntax

config setting=value [, setting=value]

4.12.2 Description

Defines a list of configuration bit setting definitions. This list sets the PIC18 processor's
configuration bits represented by setting to a value described by value. Refer to
individual PIC18 microcontroller data sheets for a description of the configuration bits.
Available settings and values maybe found in both the standard processor include
(*.inc) files and the “PIC18 Configuration Settings Addendum” (DS51537).

Multiple settings may be defined on a single line, separated by commas. Settings for a
single configuration byte may also be defined on separate lines.

Before this directive is used, a PIC18 MCU must be declared through the command
line, the list directive, the processor directive or Configure>Select Device in
MPLAB IDE.
© 2005 Microchip Technology Inc. DS33014J-page 59

Assembler/Linker/Librarian User’s Guide
Another directive that may be used to set configuration bits for PIC18 MCU devices is
the __config directive, but this is not recommended for new code.

4.12.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is placed in source code so that, when the code is compiled/assembled
into a hex file, the configuration values are preset to desired values in your application.
This is useful when giving your files to a third-party programming house, as this helps
insure the device is configured correctly when programmed.

Place configuration bit assignments at the beginning of your code. Use the
configuration options (setting=value pairs) listed in the standard include (*.inc)
file or the addendum. The config directive can be used multiple times in the source
code, but an error will be generated if the same bit is assigned a value more
than once, i.e.,

CONFIG CP0=OFF, WDT=ON
CONFIG CP0=ON ;(An error will be issued since CP0 is assigned twice)

4.12.4 See Also

__config __idlocs list processor

4.12.5 Simple Example

#include p18f452.inc ;Include standard header file
 ;for the selected device.

;code protect disabled
CONFIG CP0=OFF

;Oscillator switch enabled, RC oscillator with OSC2 as I/O pin.
CONFIG OSCS=ON, OSC=LP

;Brown-OutReset enabled, BOR Voltage is 2.5v
CONFIG BOR=ON, BORV=25

;Watch Dog Timer enable, Watch Dog Timer PostScaler count - 1:128
CONFIG WDT=ON, WDTPS=128

;CCP2 pin Mux enabled
CONFIG CCP2MUX=ON

;Stack over/underflow Reset enabled
CONFIG STVR=ON

4.13 constant – DECLARE SYMBOL CONSTANT

4.13.1 Syntax

constant label=expr [...,label=expr]

Note: Do not mix __config and config directives in the same code.
DS33014J-page 60 © 2005 Microchip Technology Inc.

Directives
4.13.2 Description

Creates symbols for use in MPASM assembler expressions. Constants may not be
reset after having once been initialized, and the expression must be fully resolvable at
the time of the assignment. This is the principal difference between symbols declared
as constant and those declared as variable, or created by the set directive. Otherwise,
constants and variables may be used interchangeably in absolute code expressions.

4.13.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

Although equ or cblock is more generally used to create constants, the constant
directive also works.

4.13.4 See Also

set variable equ cblock

4.13.5 Examples

See the examples under variable.

4.14 da – STORE STRINGS IN PROGRAM MEMORY (PIC12/16 MCUs)

4.14.1 Syntax

[label] da expr [, expr2, ..., exprn]

4.14.2 Description

da – Data ASCII.

Generates a packed 14-bit number representing two 7-bit ASCII characters.

4.14.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is useful for storing strings in memory for PIC16 MCU devices.

4.14.4 Simple Examples

• da "abcdef"

will put 30E2 31E4 32E6 into program memory

• da "12345678" ,0

will put 18B2 19B4 1AB6 1BB8 0000 into program memory

• da 0xFFFF

will put 0x3FFF into program memory

4.14.5 Application Example – da

This example shows the usefulness of directive da in storing a character string in the
program memory of 14-bit architecture devices. This directive generates a packed
14-bit number representing two 7-bit ASCII characters.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 ORG 0x0000 ;The following code will be
© 2005 Microchip Technology Inc. DS33014J-page 61

Assembler/Linker/Librarian User’s Guide
 ;programmed in reset address 0.
 goto start ;Jump to an address labelled
 ;'start'.

start ;Write your main program here.

 goto $;Go to current line (loop here)

 ORG 0x1000 ;Store the string starting from
 ;1000H.

Ch_stng da "PICmicro"

Directive da produces four 14-bit numbers: 2849, 21ED, 34E3 and 396F representing
the ASCII equivalent of PI, Cm, ic, and ro. See below for more information.

Sngl_ch da "A" ;7-bit ASCII equivalents of 'A'
 ;and a NULL charater will be packed
 ;in a 14-bit number.

 da 0xff55 ;Places 3f55 in program memory.
 ;No packing.

 end

Determining 14-Bit Numbers

For the following statement:

Ch_stng da "PICmicro"

directive da produces four 14-bit numbers: 2849, 21ED, 34E3 and 396F representing
the ASCII equivalent of PI, Cm, ic and ro.

To see how the 14-bit numbers are determined, look at the ASCII values of P and I,
which are 50h(01010000) and 49h(01001001) respectively. Each is presented in 7-bit
as (0)1010000 and (0)1001001 respectively. The packed 14-bit number is
101000 01001001, which is stored as (00)101000 01001001 or 2849.

4.15 data – CREATE NUMERIC AND TEXT DATA

4.15.1 Syntax

[label] data expr,[,expr,...,expr]
[label] data "text_string"[,"text_string",...]

4.15.2 Description

Initialize one or more words of program memory with data. The data may be in the form
of constants, relocatable or external labels or expressions of any of the above. The data
may also consist of ASCII character strings, text_string, enclosed in single quotes
for one character or double quotes for strings. Single character items are placed into
the low byte of the word, while strings are packed two to a word. If an odd number of
characters are given in a string, the final byte is zero. On all families except the PIC18
device family, the first character is in the Most Significant Byte of the word. On the
PIC18 device family, the first character is in the Least Significant Byte of the word.
DS33014J-page 62 © 2005 Microchip Technology Inc.

Directives
4.15.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

When generating a linkable object file, this directive can also be used to declare
initialized data values. Refer to the idata directive for more information.

db and other data directives are more commonly used than data.

4.15.4 See Also

db de dt dw idata

4.15.5 Simple Example

data reloc_label+10 ; constants
data 1,2,ext_label ; constants, externals
data "testing 1,2,3" ; text string
data 'N' ; single character
data start_of_program ; relocatable label

4.15.6 PIC16 Application Example – data

This example shows the usefulness of directive data in storing one or more words in
program memory.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 ORG 0x0000 ;The following code will be
 ;programmed in reset address 0.
 goto start ;Jump to an address labelled
 ;’start’.

start ;Write your main program here.

 goto $;Go to current line (loop here)

 ORG 0x1000 ;Store the string starting from
 ;1000H.

Ch_stng data ’M’,’C’,’U’ ;3 program memory locations
 ;will be filled with ASCII
 ;equivalent of ’M’,’C’ and
 ;’U’.

Directive data produces three 14-bit numbers: 004Dh, 0043h, and 0055h. 4Dh, 43h
and 55h are ASCII equivalents of ‘M’, ‘C’ and ‘U’, respectively.

tb1_dta data 0xffff,0xaa55 ;Places 3fffh and 2a55h in
 ;two consecutive program
 ;memory locations. As program
 ;memory is 14-bit wide,
 ;the last nibble can store
 ;a maximum value 3.

 end
© 2005 Microchip Technology Inc. DS33014J-page 63

Assembler/Linker/Librarian User’s Guide
4.15.7 PIC18 Application Example – data

This example shows the usefulness of directive data in storing one or more words in
program memory.

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

 ORG 0x0000 ;The following code will be
 ;programmed in reset address 0.
 goto start ;Jump to an address labelled
 ;’start’.

start ;Write your main program here.

 goto $;Go to current line (loop here)

 ORG 0x1000 ;Store the string starting from
 ;1000H. In PIC18 devices, the
 ;first character is in least
 ;significant byte.

Ch_stng data ’M’,’C’,’U’ ;3 program memory locations
 ;will be filled with ASCII
 ;equivalent of ’M’,’C’ and
 ;’U’.

Directive data produces three 16-bit numbers: 004Dh, 0043h and 0055h. 4Dh, 43h
and 55h are ASCII equivalents of ‘M’, ‘C’ and ‘U’, respectively. See
Section 4.10 “code_pack – Begin an Object File Packed Code Section (PIC18
MCUs)” for better use of memory.

Ch_stg1 data "MCU" ;2 program memory locations
 ;will be filled with two
 ;words (16-bit numbers),
 ;each representing ASCI
 ;equivalent of two
 ;characters. The last
 ;character will be taken as
 ;NULL in case odd number of
 ;characters are specified.

Directive data produces two words: 434Dh and 0055h. 434Dh represents ‘C’ and ‘M’.

tb1_dta data 0xffff,0xaa55 ;Places ffff and aa55 in
 ;two consecutive program
 ;memory locations.

 end
DS33014J-page 64 © 2005 Microchip Technology Inc.

Directives
4.16 db – DECLARE DATA OF ONE BYTE

4.16.1 Syntax

[label] db expr[,expr,...,expr]

4.16.2 Description

db – Data Byte.

Reserve program memory words with 8-bit values. Multiple expressions continue to fill
bytes consecutively until the end of expressions. Should there be an odd number of
expressions, the last byte will be zero unless in a PIC18 code_pack section.

4.16.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

When generating a linkable object file, this directive can also be used to declare
initialized data values. Refer to the idata directive for more information.

For PIC18 devices, use code_pack with db, since it is desired to not have bytes
padded with zeroes. See the description of code_pack for more information.

4.16.4 See Also

data de dt dw idata code_pack

4.16.5 Simple Examples

Example1: PIC16 Devices

db 0x0f, 't', 0x0f, 'e', 0x0f, 's', 0x0f, 't', '\n'

ASCII: 0x0F74 0x0F65 0x0F73 0x0F74 0x0a00

Example 2: PIC18 Devices

db 't', 'e', 's', 't', '\n'

ASCII: 0x6574 0x7473 0x000a

4.16.6 PIC16 Application Example – db

This example shows the usefulness of directive db in storing one or more bytes or
characters in program memory.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 ORG 0x0000 ;The following code will be
 ;programmed in reset address 0.
 goto start ;Jump to an address labelled
 ;’start’.

start ;Write your main program here.

 goto $;Go to current line (loop here)

 ORG 0x1000 ;Store the string starting from
 ;1000H.

Ch_stng db 0,’M’,0,’C’,0,’U’
© 2005 Microchip Technology Inc. DS33014J-page 65

Assembler/Linker/Librarian User’s Guide
Ch_strng contains three 14-bit numbers: 004Dh, 0043h and 0055h. These are ASCII
equivalents of ‘M’, ‘C’ and ‘U’, respectively.

tb1_dta db 0,0xff ;Places 00ff in program memory
 ;location.

 end

4.16.7 PIC18 Application Example – db

This example shows the usefulness of directive db in storing one or more byte or
character in program memory.

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

 ORG 0x0000 ;The following code will be
 ;programmed in reset address 0.
 goto start ;Jump to an address labelled
 ;’start’.

start ;Write your main program here.

 goto $;Go to current line (loop here)

 ORG 0x1000 ;Store the string starting from
 ;1000H. In PIC18 devices, the
 ;first character is in least
 ;significant byte.

Ch_stng db ’M’,’C’,’U’

Ch_strng contains three 16-bit numbers: 004Dh, 0043h and 0055h. These are ASCII
equivalents of ‘M’, ‘C’ and ‘U’, respectively. Information on storing data in both bytes of
a program word on the PIC18 architecture can be found in Section 4.10 “code_pack
– Begin an Object File Packed Code Section (PIC18 MCUs)”

tb1_dta db 0,0xff ;Places ff00 in program memory
 ;location.

 end
DS33014J-page 66 © 2005 Microchip Technology Inc.

Directives
4.17 de – DECLARE EEPROM DATA BYTE

4.17.1 Syntax

[label] de expr [, expr, ..., expr]

4.17.2 Description

de – Data EEPROM.

This directive can be used at any location for any processor.

For PIC18 devices, reserve memory word bytes are packed. If an odd number of bytes
is specified, a 0 will be added unless in a code_pack section. See the description for
code_pack for more infomation.

For all other PICmicro devices, reserve memory words with 8-bit data. Each expr must
evaluate to an 8-bit value. The upper bits of the program word are zeroes. Each
character in a string is stored in a separate word.

4.17.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is designed mainly for initializing data in the EE data memory region of
PICmicro devices with EE data Flash.

For PIC18 devices, make sure to specify the start of data memory at 0xF00000. For
other PICmicro devices, make sure to specify the start of data memory at 0x2100.
Always check your device programming specification for the correct address.

4.17.4 See Also

data db dt dw code_pack

4.17.5 Simple Example

Initialize EEPROM data on a PIC16 device:

org 0x2100
de "My Program, v1.0", 0
© 2005 Microchip Technology Inc. DS33014J-page 67

Assembler/Linker/Librarian User’s Guide
4.17.6 PIC16 Application Example – de

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 org 0x2100 ;The absolue address 2100h is
 ;mapped to the 0000 location of
 ;EE data memory.

;You can create a data or character table starting from any
;address in EE data memory.

ch_tbl2 de "PICmicro" ;6 EE data memory locations
 ;(starting from 0) will be filled
 ;with 6 ASCII characters.

end

4.17.7 PIC18 Application Example – de

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

 org 0xF00000 ;The absolue address F00000h is
 ;mapped to the 0000 location of
 ;EE data memory for PIC18 devices.

;You can create a data or character table starting from any
;address in EE data memory.

ch_tbl2 de "PICmicro" ;6 EE data memory locations
 ;(starting from 0) will be filled
 ;with 6 ASCII characters.

end

4.18 #define – DEFINE A TEXT SUBSTITUTION LABEL

4.18.1 Syntax

#define name [string]

4.18.2 Description

This directive defines a text substitution string. Wherever name is encountered in the
assembly code, string will be substituted.

Using the directive with no string causes a definition of name to be noted internally
and may be tested for using the ifdef directive.

This directive emulates the ANSI ‘C’ standard for #define. Symbols defined with this
method are not available for viewing using MPLAB IDE.

4.18.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.
DS33014J-page 68 © 2005 Microchip Technology Inc.

Directives
#define is useful for defining values for constants in your program.

This directive is also useful with the ifdef and ifndef directives, which look for the
presence of an item in the symbol table.

4.18.4 See Also

#undefine #include ifdef ifndef

4.18.5 Simple Example

#define length 20
#define control 0x19,7
#define position(X,Y,Z) (Y-(2 * Z +X))
 :
 :
test_label dw position(1, length, 512)
bsf control ; set bit 7 in f19

4.18.6 Application Example – #define/#undefine

This example shows the usage of #define and #undefine directives. A symbol
name previously defined with the #define directive, is removed from the symbol table
if #undefine directive is used. The same symbol may be redefined again.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 area set 0 ;The label 'area' is assigned
 ;the value 0.
 #define lngth 50H ;Label 'lngth' is assigned
 ;the value 50H.
 #define wdth 25H ;Label 'wdth' is assigned
 ;the value 25H
 area set lngth*wdth ;Reassignment of label 'area'.
 ;So 'area' will be reassigned a
 ;value equal to 50H*25H.

 #undefine lngth ;Undefine label 'lngth'.
 #undefine wdth ;Undefine label 'wdth'
 #define lngth 0 ;Define label 'lngth' to '0'.

end

By using the above directives, lngth will be reassigned a value ‘0’ and wdth will be
removed from the symbol list in the list (.lst) file. The label lngth must be undefined
before it can be defined as ‘0’.

Note: A processor-specific include file exists with predefined SFR names. It is
recommended that you use this file instead of defining the variables
yourself. See #include for how to include a file in your program.
© 2005 Microchip Technology Inc. DS33014J-page 69

Assembler/Linker/Librarian User’s Guide
4.19 dt – DEFINE TABLE (PIC12/16 MCUs)

4.19.1 Syntax

[label] dt expr [, expr, ..., expr]

4.19.2 Description

dt – Data Table.

Generates a series of RETLW instructions, one instruction for each expr. Each expr
must be an 8-bit value. Each character in a string is stored in its own RETLW instruction.

4.19.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is used when generating a table of data for the PIC12/16 device family.
If you are using a PIC18 device, it is recommended that you use the table read/write
(TBLRD/TBLWT) features. See the device data sheet for more information.

4.19.4 See Also

data db de dw

4.19.5 Simple Example

dt "A Message", 0
dt FirstValue, SecondValue, EndOfValues

4.20 dw – DECLARE DATA OF ONE WORD

4.20.1 Syntax

[label] dw expr[,expr,...,expr]

4.20.2 Description

dw – Data Word.

Reserve program memory words for data, initializing that space to specific values. For
PIC18 devices, dw functions like db. Values are stored into successive memory
locations and the location counter is incremented by one. Expressions may be literal
strings and are stored as described in the db data directive.

4.20.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

When generating a linkable object file, this directive can also be used to declare
initialized data values. Refer to the idata directive for more information.

While db is more common to use, you may use dw to store data in Flash PIC16FXXX
devices, as many of these devices can read all 14 bits of a program memory word at
run time. See the PIC16F877A data sheet for examples and more information.

4.20.4 See Also

data db idata
DS33014J-page 70 © 2005 Microchip Technology Inc.

Directives
4.20.5 Simple Example

dw 39, "diagnostic 39", 0x123
dw diagbase-1

4.21 else – BEGIN ALTERNATIVE ASSEMBLY BLOCK TO if CONDITIONAL

4.21.1 Syntax

Preferred:

else

Supported:

#else
.else

4.21.2 Description

Used in conjunction with an if directive to provide an alternative path of assembly
code should the if evaluate to false. else may be used inside a regular program block
or macro.

4.21.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not an instruction. It is used to perform conditional assembly of code.

4.21.4 See Also

endif if

4.21.5 Simple Example

if rate < 50
 incf speed, F
else
 decf speed, F
endif

4.21.6 Application Example – if/else/endif

See this example under if.

4.22 end – END PROGRAM BLOCK

4.22.1 Syntax

end

4.22.2 Description

Indicates the end of the program.

4.22.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

You will need at least one end directive in any assembly program to indicate the end
of a build. In a single assembly file program, one and only one end must be used.
© 2005 Microchip Technology Inc. DS33014J-page 71

Assembler/Linker/Librarian User’s Guide
Be careful not to include files which contain end as assembly will be prematurely
stopped.

4.22.4 See Also

org

4.22.5 Simple Example

#include p18f452.inc
 : ; executable code
 : ;
end ; end of instructions

4.23 endc – END AN AUTOMATIC CONSTANT BLOCK

4.23.1 Syntax

endc

4.23.2 Description

endc terminates the end of a cblock list. It must be supplied to terminate the list.

4.23.3 Usage

This directive is used in the following types of code: absolute. For information on types
of code, see Section 1.6 “Assembler Operation”.

For every cblock directive used, there must be a corresponding endc.

4.23.4 See Also

cblock

4.23.5 Examples

See the examples under cblock.

4.24 endif – END CONDITIONAL ASSEMBLY BLOCK

4.24.1 Syntax

Preferred:

endif

Supported:

#endif
.endif
.fi

4.24.2 Description

This directive marks the end of a conditional assembly block. endif may be used
inside a regular program block or macro.

4.24.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

For every if directive used, there must be a corresponding endif.

if and endif are not instructions, but used for code assembly only.
DS33014J-page 72 © 2005 Microchip Technology Inc.

Directives
4.24.4 See Also

else if

4.24.5 Examples

See the examples under if.

4.25 endm – END A MACRO DEFINITION

4.25.1 Syntax

endm

4.25.2 Description

Terminates a macro definition begun with macro.

4.25.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

For every macro directive used, there must be a corresponding endm.

4.25.4 See Also

macro exitm

4.25.5 Simple Example

make_table macro arg1, arg2
 dw arg1, 0 ; null terminate table name
 res arg2 ; reserve storage
 endm

4.25.6 Application Example – macro/endm

See this example under macro.

4.26 endw – END A while LOOP

4.26.1 Syntax

Preferred:

endw

Supported:

.endw

4.26.2 Description

endw terminates a while loop. As long as the condition specified by the while
directive remains true, the source code between the while directive and the endw
directive will be repeatedly expanded in the assembly source code stream. This
directive may be used inside a regular program block or macro.
© 2005 Microchip Technology Inc. DS33014J-page 73

Assembler/Linker/Librarian User’s Guide
4.26.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

For every while directive used, there must be a corresponding endw.

while and endw are not instructions, but used for code assembly only.

4.26.4 See Also

while

4.26.5 Examples

See the example under while.

4.27 equ – DEFINE AN ASSEMBLER CONSTANT

4.27.1 Syntax

label equ expr

4.27.2 Description

The value of expr is assigned to label.

4.27.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

In a single assembly file program, equ is commonly used to assign a variable name to
an address location in RAM. Do not use this method for assigning variables when
building a linked project; use a res directive inside a data section directive (idata,
udata).

4.27.4 See Also

set cblock res idata udata udata_acs udata_ovr udata_shr

4.27.5 Simple Example

four equ 4 ; assigned the numeric value of 4 to label four

4.27.6 Application Example – set/equ

See this example under set.

4.28 error – ISSUE AN ERROR MESSAGE

4.28.1 Syntax

error "text_string"

4.28.2 Description

text_string is printed in a format identical to any MPASM assembler error message.
text_string may be from 1 to 80 characters.
DS33014J-page 74 © 2005 Microchip Technology Inc.

Directives
4.28.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

You can use this directive to generate errors for yourself or others who build your code.
You can create any error message you wish, as long as it is no longer than 80
characters.

4.28.4 See Also

messg if

4.28.5 Simple Example

error_checking macro arg1
 if arg1 >= 55 ; if arg is out of range
 error "error_checking-01 arg out of range"
 endif
endm

4.28.6 Application Example – error

This program demonstrates the error assembler directive, which sets an error
message to be printed in the listing file and error file.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 variable baudrate ;variable used to define
 ;required baud rate

 baudrate set D'5600' ;Enter the required value of
 ;baud rate here.

 if (baudrate!=D'1200')&&(baudrate!=D'2400')&&
 (baudrate!=D'4800')&&(baudrate!=D'9600')&&
 (baudrate!=D'19200')
 error "Selected baud rate is not supported"
 endif

The if-endif code above outputs error if the baud rate selected is other than 1200,
2400, 4800, 9600 or 19200 Hz.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 75

Assembler/Linker/Librarian User’s Guide
4.29 errorlevel – SET MESSAGE LEVEL

4.29.1 Syntax

errorlevel {0|1|2|+msgnum|-msgnum} [, ...]

4.29.2 Description

Sets the types of messages that are printed in the listing file and error file.

4.29.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

Errors cannot be disabled. Warnings may be disabled using setting 2. Messages may
be disabled using settings 1 or 2. Also, messages may be disabled individually.
However, the setting of 0, 1 or 2 overrides individual message disabling or enabling.

Be careful about disabling warnings and messages, as this can make debugging of
your code more difficult.

The most common usage for this directive is to suppress “MESSAGE 302 – Operand
Not in bank 0, check to ensure bank bits are correct”. See the Simple Example for how
to do this.

4.29.4 See Also

list error

4.29.5 Simple Example

errorlevel -302 ; Turn off banking message
 ; known tested (good) code
 :
errorlevel +302 ; Enable banking message
 ; untested code
 :
end

4.29.6 Application Example – errorlevel

This program demonstrates the errorlevel assembler directive, which sets the type
of messages that are printed in the listing file and error file.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 errorlevel 0 ;Display/print messages,
 ;warnings and errors.

 messg "CAUTION: This program has errors" ;display on build

This message will display/print for error level 0.

Setting Affect

0 Messages, warnings, and errors printed

1 Warnings and errors printed

2 Errors printed

-msgnum Inhibits printing of message msgnum

+msgnum Enables printing of message msgnum
DS33014J-page 76 © 2005 Microchip Technology Inc.

Directives
 errorlevel 1 ;Display/print only warnings
 ;and errors.

 messg "CAUTION: This program has errors" ;display message

This message will NOT display/print for error level 1 or 2.

group1 udata 0x20
 group1_var1 res 1 ;Label of this directive is not
 ;at column 1. This will generate
 ;a warning number 207.

Warning #207 will display/print for error level 0 or 1.

 errorlevel -207 ;This disables warning whose
 ;number is 207.

 group1_var2 res 1 ;label of this directive is also
 ;not at column 1, but no warning
 ;is displayed/printed.

 errorlevel +207 ;This enables warning whose
 ;number is 207

group2 udata

 errorlevel 2 ;Display/print only errors

 group2_var1 res 1 ;label of this directive is not
 ;at column 1. This will generate
 ;a warning number 207.

Warning #207 will NOT display/print for error level 2.

 errorlevel 1 ;Display/print warnings
 ;and errors.

 group2_var2 res 1 ;label of this directive is not
 ;at column 1. This will generate
 ;a warning number 207.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

INTRT CODE 0x4 ;The code section named INTRT is
 ;placed at 0x4. The next two
 ;instructions are placed in
 ;code section INTRT
 pagesel service_int ;Label 'service_int' is not
 goto service_int ;defined. Hence this generates
 ;error[113].
© 2005 Microchip Technology Inc. DS33014J-page 77

Assembler/Linker/Librarian User’s Guide
Error 113 will always display/print, regardless of error level.

PGM CODE ;This is the begining of the code
 ;section named 'PGM'. It is a
 ;relocatable code section since
 ;no absolute address is given along
 ;with directive CODE.
start
 movwf group1_var1
 goto $;Go to current line (loop here)
 end

4.30 exitm – EXIT FROM A MACRO

4.30.1 Syntax

exitm

4.30.2 Description

Force immediate return from macro expansion during assembly. The effect is the same
as if an endm directive had been encountered.

4.30.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

Use this directive to prematurely end a macro, usually for a specific condition. This is
similar to the C language command break.

4.30.4 See Also

endm macro

4.30.5 Simple Example

test macro filereg
 if filereg == 1 ; check for valid file
 exitm
 else
 error "bad file assignment"
 endif
 endm

4.30.6 Application Example – exitm

This program demonstrates the exitm assembler directive, which causes an
immediate exit from a macro. It is used in the example to exit from the macro when
certain conditions are met.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

result equ 0x20 ;Assign value 20H to label
 ;result.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
DS33014J-page 78 © 2005 Microchip Technology Inc.

Directives
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

add MACRO num1,num2 ;'add' is a macro. The values of
 ;'num1' and 'num2' must be passed
 ;to this macro.

if num1>0xff ;If num1>255 decimal,
 exitm ;force immediate return from
 ;macro during assembly.
 else
 if num2>0xff ;If num2>255 decimal,
 exitm ;force immediate return from
 ;macro during assembly.
 else

 movlw num1 ;Load W register with a literal
 ;value assigned to the label
 ;'num1'.

 movwf result ;Load W register to an address
 ;location assigned to the label
 ;'result'.

 movlw num2 ;Load W register with a literal
 ;value assigned to the label
 ;'num2'.

 addwf result ;Add W register with the memory
 ;location addressed by 'result'
 ;and load the result back to
 ;'result'.
 endif
endif
 endm ;End of 'add' MACRO

 org 0010 ;My main program starts at 10H.

start ;The label 'start' is assigned an
 ;address 10H.

 add .100,.256 ;Call 'add' MACRO with decimal
 ;numbers 100 and 256 assigned to
 ;'num1' and 'num2' labels,
 ;respactively. EXTIM directive in
 ;macro will force return.
 ;Remember '.' means decimal, not
 ;floating point.
 end
© 2005 Microchip Technology Inc. DS33014J-page 79

Assembler/Linker/Librarian User’s Guide
4.31 expand – EXPAND MACRO LISTING

4.31.1 Syntax

expand

4.31.2 Description

Expand all macros in the listing file. This directive is roughly equivalent to the /m
MPASM assembler command line option, but may be disabled by the occurrence of a
subsequent noexpand.

4.31.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive may be useful when exploring a small range of code with many macros
in it.

4.31.4 See Also

macro noexpand

4.32 extern – DECLARE AN EXTERNALLY DEFINED LABEL

4.32.1 Syntax

extern label [, label...]

4.32.2 Description

This directive declares symbol names that may be used in the current module but are
defined as global in a different module.

The extern statement must be included before the label is used. At least one label
must be specified on the line. If label is defined in the current module,
MPASM assembler will generate a duplicate label error.

4.32.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

As soon as you have more than one file in your project, you may use this directive.

extern will be used in a file when a label (usually a variable) is used by that file.
global will be used in another file so that the label may be seen by other files. You
must use both directives as specified or the label will not be visible to other files.

4.32.4 See Also

global idata udata udata_acs udata_ovr udata_shr

4.32.5 Simple Example

extern Function
 :
call Function
DS33014J-page 80 © 2005 Microchip Technology Inc.

Directives
4.32.6 Application Example – extern/global

The program main.asm, along with sub.asm, demonstrate the global and extern
directives, which make it possible to use symbols in modules other than where they are
defined. This allows a project to be split up into multiple files (two in this example) for
code reuse.

;***
;main.asm
;***
 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 UDATA
 delay_value res 1

 GLOBAL delay_value ;The variable 'delay_value',
 ;declared GLOBAL in this
 ;module, is included in an
 ;EXTERN directive in the module
 ;sub.asm.

 EXTERN delay ;The variable 'delay', declared
 ;EXTERN in this module, is
 ;declared GLOBAL in the module
 ;sub.asm.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.

start
 movlw D'10'
 movwf delay_value
 xorlw 0x80
 call delay

 goto start
 end

;***
;sub.asm
;***
 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 GLOBAL delay ;The variable 'delay' declared
 ;GLOBAL in this module is
 ;included in an EXTERN directive
 ;in the module main.asm.
© 2005 Microchip Technology Inc. DS33014J-page 81

Assembler/Linker/Librarian User’s Guide
 EXTERN delay_value ;The variable 'delay_value'
 ;declared EXTERN in this module
 ;is declared GLOBAL in the
 ;module main.asm.

PGM CODE

delay
 decfsz delay_value,1
 goto delay
 return

 end

4.33 fill – SPECIFY PROGRAM MEMORY FILL VALUE

4.33.1 Syntax

[label] fill expr,count

4.33.2 Description

Generates count occurrences of the program word or byte (PIC18 devices), expr. If
bounded by parentheses, expr can be an assembler instruction.

4.33.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is often used to force known data into unused program memory. This
helps ensure that if code ever branches to an unused area at run time, a fail-safe
condition occurs. For example, it is not uncommon to see this used with the watchdog
timer (WDT) on a PIC16 device. Unused program memory would be filled with goto or
branch instructions to prevent execution of the clrwdt instruction in code, which
would cause the device to reset. See the device data sheet for more information on the
WDT.

4.33.4 See Also

data dw org

4.33.5 Simple Examples

Example 1: PIC10/12/16 MCU’s

fill 0x1009, 5 ; fill with a constant
fill (GOTO RESET_VECTOR), NEXT_BLOCK-$

Example 2: PIC18 Devices

 #include p18f252.inc

 org 0x12
failsafe goto $

 org 0x100
 fill (goto failsafe), (0x8000-$)/2 ;Divide by 2 for
 ;2-word instructions
 end
DS33014J-page 82 © 2005 Microchip Technology Inc.

Directives
4.33.6 PIC16 Application Example – fill

The fill directive is used to specify successive program memory locations with a
constant or an assembly instruction.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

RST CODE 0x0000 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

 fill 0, INTRPT-$;Fill with 0 up to address 3 -
 ;INTRPT addr. minus current addr.

INTRPT CODE 0x0004 ;The code section named INTRPT
 ;is placed at program memory
 ;location 0x4. The next two
 ;instructions are placed in
 ;code section INTRPT.
 pagesel ISR ;Jumps to the location labelled
 goto ISR ;ISR.

 fill (goto start), start-$;Fill upto address 0Fh with
 ;instruction <goto start>.
 CODE 0x0010
start ;Write your main program here.

 fill (nop), 5 ;Fill 5 locations with NOPs.
 goto $;Go to current line (loop here)

ISR ;Write your interrupt service
 retfie ;routine here.
 end

4.33.7 PIC18 Application Example – fill

The fill directive is used to specify successive program memory locations with a
constant or an assembly instruction. For PIC18 devices, only an even number is
allowed to be specified as a count of locations to be filled.

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

RST CODE 0x0000 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The instruction
 ;'goto start' is placed in
 ;code section RST.
 goto start ;Jumps to the location labelled
 ;'start'.

 fill 0, HI_INT-$;Fills 0 in 2 program memory
 ;locations: 0004 and 0006 -
 ;HI_INT addr. minus current addr.

HI_INT CODE 0x0008
 goto INTR_H
© 2005 Microchip Technology Inc. DS33014J-page 83

Assembler/Linker/Librarian User’s Guide
 fill (goto start),6 ;Fills 6 locations (each location
 ;is 2 bytes wide) with 3 numbers
 ;of 2 word wide instructions
 ;<goto start>
LO_INT CODE 0x0018
 goto INTR_L
 fill 10a9, start-$;Fills address 1Ch and 1Eh with
 ;10a9h
 CODE 0x0020
start ;Write your main program here

 fill (nop), 4 ;Fills 2 locations (4 bytes) with
 ;NOP
 goto $;Go to current line (loop here)

INTR_H ;Write your high interrupt ISR here
 retfie
INTR_L ;Write your low interrupt ISR here
 retfie
 end

4.34 global – EXPORT A LABEL

4.34.1 Syntax

global label [, label...]

4.34.2 Description

This directive declares symbol names that are defined in the current module and
should be available to other modules. At least one label must be specified on the line.

4.34.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

When your project uses more than one file, you will be generating linkable object code.
When this happens, you may use the global and extern directives.

global is used to make a label visible to other files. extern must be used in the file
that uses the label to make it visible in that file.

4.34.4 See Also

extern idata udata udata_acs udata_ovr udata_shr

4.34.5 Simple Example

 global Var1, Var2
 global AddThree

 udata
Var1 res 1
Var2 res 1
 code
AddThree
 addlw 3
 return
DS33014J-page 84 © 2005 Microchip Technology Inc.

Directives
4.34.6 Application Example – extern/global

See this example under extern.

4.35 idata – BEGIN AN OBJECT FILE INITIALIZED DATA SECTION

4.35.1 Syntax

[label] idata [RAM_address]

4.35.2 Description

This directive declares the beginning of a section of initialized data. If label is not
specified, the section is named .idata. The starting address is initialized to the
specified address or will be assigned at link time if no address is specified. No code can
be placed by the user in this segment.

The linker will generate a look-up table entry for each byte specified in an idata
section. You must then link or include the appropriate initialization code. Examples of
initialization code that may be used and modified as needed may be found with
MPLINK linker sample application examples.

The res, db and dw directives may be used to reserve space for variables. res will
generate an initial value of zero. db will initialize successive bytes of RAM. dw will
initialize successive bytes of RAM, one word at a time, in low-byte/high-byte order.

4.35.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

Use this directive to initialize your variables, or use a udata directive and then initialize
your variables with values in code. It is recommended that you always initialize your
variables. Relying on RAM initialization can cause problems, especially when using an
emulator, as behavioral differences between the emulator and the actual part may
occur.

4.35.4 See Also

extern global udata udata_acs udata_ovr udata_shr

4.35.5 Simple Example

 idata
LimitL dw 0
LimitH dw D'300'
Gain dw D'5'
Flags db 0
String db 'Hi there!'

4.35.6 Application Example – idata

This directive reserves RAM locations for variables and directs the linker to generate a
lookup table that may be used to initialize the variables specified in this section. The
Starting Address of the lookup table can be obtained from the Map (.map) file. If you
don’t specify a value in the idata section, the variables will be initialized with 0.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

Note: This directive is not available for 12-bit instruction width (PIC10, some
PIC12/PIC16) devices.
© 2005 Microchip Technology Inc. DS33014J-page 85

Assembler/Linker/Librarian User’s Guide
group1 IDATA 0x20 ;Initialized data at location
 ;20h.
 group1_var1 res 1 ;group1_var1 located at 0x20,
 ;initialized with 0.
 group1_var2 res 1 ;group1_var2 located at 0x21,
 ;initialized with 0.

group2 IDATA ;Declaration of group2 data. The
 ;addresses for variables under
 ;this data section are allocated
 ;automatically by the linker.

 group2_var1 db 1,2,3,4 ;4 bytes in RAM are reserved.
 group2_var2 dw 0x1234 ;1 word in RAM is reserved.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 goto $;Go to current line (loop here)
 end

4.36 idata_acs – BEGIN AN OBJECT FILE INITIALIZED DATA SECTION IN
ACCESS RAM (PIC18 MCUs)

4.36.1 Syntax

[label] idata_acs [RAM_address]

4.36.2 Description

This directive declares the beginning of a section of initialized data in Access RAM. If
label is not specified, the section is named .idata_acs. The starting address is
initialized to the specified address or will be assigned at link time if no address is
specified. No code can be placed by the user in this segment.

The linker will generate a look-up table entry for each byte specified in an idata
section. You must then link or include the appropriate initialization code. Examples of
initialization code that may be used and modified as needed may be found with
MPLINK linker sample application examples.

The res, db and dw directives may be used to reserve space for variables. res will
generate an initial value of zero. db will initialize successive bytes of RAM. dw will
initialize successive bytes of RAM, one word at a time, in low-byte/high-byte order.

4.36.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.
DS33014J-page 86 © 2005 Microchip Technology Inc.

Directives
Use this directive to initialize your variables, or use a udata directive and then initialize
your variables with values in code. It is recommended that you always initialize your
variables. Relying on RAM initialization can cause problems, especially when using an
emulator, as behavioral differences between the emulator and the actual part may
occur.

4.36.4 See Also

extern global udata udata_acs udata_ovr udata_shr

4.36.5 Simple Example

 idata_acs
LimitL dw 0
LimitH dw D'300'
Gain dw D'5'
Flags db 0
String db 'Hi there!'

4.37 __idlocs – SET PROCESSOR ID LOCATIONS

4.37.1 Syntax

__idlocs expr
__idlocs addr, expr (PIC18 Only)

4.37.2 Description

For PIC12 and PIC16 devices, __idlocs sets the four ID locations to the hexadecimal
value of expr. For example, if expr evaluates to 1AF, the first (lowest address) ID
location is zero, the second is one, the third is ten, and the fourth is fifteen.

For PIC18 devices, __idlocs sets the two-byte device ID at location addr to the
hexadecimal value of expr.

Before this directive is used, the processor must be declared through the command
line, the list directive, or the processor directive.

4.37.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not commonly used, but does provide an easy method of serializing
devices. __idlocs can be read by a programmer. PIC18 devices can read this value
at run time, but PIC12/16 devices cannot.

4.37.4 See Also

__config config list processor

4.37.5 Simple Example

Example 1: PIC16 Devices

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.
 __idlocs 0x1234 ;Sets device ID to 1234.

Note: idlocs is preceded by two underline characters.
© 2005 Microchip Technology Inc. DS33014J-page 87

Assembler/Linker/Librarian User’s Guide
Example 2: PIC18 Devices

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

 __idlocs _IDLOC0, 0x1 ;IDLOC register 0 will be
 ;programmed to 1.
 __idlocs _IDLOC1, 0x2 ;IDLOC register 1 will be
 ;programmed to 2.
 __idlocs _IDLOC2, 0x3 ;IDLOC register 2 will be
 ;programmed to 3.
 __idlocs _IDLOC3, 0x4 ;IDLOC register 3 will be
 ;programmed to 4.
 __idlocs _IDLOC4, 0x5 ;IDLOC register 4 will be
 ;programmed to 5.
 __idlocs _IDLOC5, 0x6 ;IDLOC register 5 will be
 ;programmed to 6.
 __idlocs _IDLOC6, 0x7 ;IDLOC register 6 will be
 ;programmed to 7.
 __idlocs _IDLOC7, 0x8 ;IDLOC register 7 will be
 ;programmed to 8.

4.38 if – BEGIN CONDITIONALLY ASSEMBLED CODE BLOCK

4.38.1 Syntax

Preferred:

if expr

Supported:

#if expr
.if expr

4.38.2 Description

Begin execution of a conditional assembly block. If expr evaluates to true, the code
immediately following the if will assemble. Otherwise, subsequent code is skipped
until an else directive or an endif directive is encountered.

An expression that evaluates to zero is considered logically FALSE. An expression that
evaluates to any other value is considered logically TRUE. The if and while
directives operate on the logical value of an expression. A relational TRUE expression
is guaranteed to return a nonzero value, FALSE a value of zero.

if's may be nested up to 16 deep.

4.38.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not an instruction, but used to control how code is assembled, not how
it behaves at run time. Use this directive for conditional assembly or to check for a
condition, such as to generate an error message.

4.38.4 See Also

else endif

Note: The most significant nibble of __idlocs is always 0x0, according to the
programming specification.
DS33014J-page 88 © 2005 Microchip Technology Inc.

Directives
4.38.5 Simple Example

if version == 100; check current version
 movlw 0x0a
 movwf io_1
else
 movlw 0x01a
 movwf io_2
endif

4.38.6 Application Example – if/else/endif

This program demonstrates the utility of if, else and endif assembly directives.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 variable cfab ;variable used to define
 ;required configuration of
 ;PORTA & PORTB

 cfab set .1 ;Set config to decimal .1

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.

 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.

start
 banksel TRISA
 if cfab==0x0 ;If config==0x0 is true,
 clrw ;assemble the mnemonics up to
 movwf TRISA ;the directive 'else'. Set up PORTA
 movlw 0xff ;as output.
 movwf TRISB

 else
 clrw ;If config==0x0 is false,
 movwf TRISB ;assemble the mnemonics up to
 movlw 0xff ;the directive 'endif'. Set up PORTB
 movwf TRISA ;as output.
 endif

 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 89

Assembler/Linker/Librarian User’s Guide
4.39 ifdef – EXECUTE IF SYMBOL HAS BEEN DEFINED

4.39.1 Syntax

Preferred:

ifdef label

Supported:

#ifdef label

4.39.2 Description

If label has been previously defined, usually by issuing a #define directive or by
setting the value on the MPASM assembler command line, the conditional path is
taken. Assembly will continue until a matching else or endif directive is encountered.

4.39.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not an instruction, but used to control how code is assembled, not how
it behaves at run time. Use this directive for removing or adding code during debugging,
without the need to comment out large blocks of code.

4.39.4 See Also

#define #undefine else endif ifndef

4.39.5 Simple Example

#define testing 1 ; set testing "on"
 :
ifdef testing
 <execute test code> ; this path would be executed.
endif

4.39.6 Application Example – ifdef

 #include p16f877a.inc
 #define AlternateASM ;Comment out with ; if extra
 ;features not desired.
 #ifdef AlternateASM
MyPort equ PORTC ;Use Port C if AlternateASM defined.
MyTris equ TRISC ;TRISC must be used to set data
 ;direction for PORTC.

 #else
MyPort equ PORTB ;Use Port B if AlternateASM not defined.
MyTris equ TRISB ;TRISB must be used to set data
 ;direction for PORTB.

 #endif

 banksel MyTris
 clrf MyTris ;Set port to all outputs.
 banksel MyPort ;Return to bank used for port.
 movlw 55h ;Move arbitrary value to W reg.
 movwf MyPort ;Load port selected with 55h.
end
DS33014J-page 90 © 2005 Microchip Technology Inc.

Directives
4.39.7 Application Example 2 – ifdef

This program uses the control directive #define, along with the ifdef, else and
endif directives to selectively assemble code for use with either an emulator or an
actual part. The control directive #define is used to create a “flag” to indicate how to
assemble the code – for the emulator or for the actual device.

 #include p18f452.inc
 #define EMULATED ;Comment out with ; if actual part
 .
 .
INIT
 #ifdef EMULATED ;If emulator used, add lines of
 movlw 0xb0 ;initialization code to work around
 movwf 0xf9c ;table read limitation.
 #endif
 .
 .

4.40 ifndef – EXECUTE IF SYMBOL HAS NOT BEEN DEFINED

4.40.1 Syntax

Preferred:

ifndef label

Supported:

#ifndef label

4.40.2 Description

If label has not been previously defined, or has been undefined by issuing an
#undefine directive, then the code following the directive will be assembled.
Assembly will be enabled or disabled until the next matching else or endif directive
is encountered.

4.40.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not an instruction, but used to control how code is assembled, not how
it behaves at run time. Use this directive for removing or adding code during debugging,
without the need to comment out large blocks of code.

4.40.4 See Also

#define #undefine else endif ifdef

4.40.5 Simple Example

#define testing1 ; set testing on
 :
#undefine testing1 ; set testing off
 ifndef testing ; if not in testing mode
 : ; execute this path
 endif
 end ; end of source
© 2005 Microchip Technology Inc. DS33014J-page 91

Assembler/Linker/Librarian User’s Guide
4.40.6 Application Example – ifndef

 #include p16f877a.inc
 #define UsePORTB ;Comment out with ; to use PORTC

 #ifndef UsePORTB
MyPort equ PORTC ;Use Port C if UsePORTB not defined.
MyTris equ TRISC ;TRISC must be used to set data
 ;direction for PORTC.

 #else
MyPort equ PORTB ;Use Port B if UsePORTB defined.
MyTris equ TRISB ;TRISB must be used to set data
 ;direction for PORTB.

 #endif

 banksel MyTris
 clrf MyTris ;Set port to all outputs.
 banksel MyPort ;Return to bank used for port.
 movlw 55h ;Move arbitrary value to W reg.
 movwf MyPort ;Load port selected with 55h.
end

4.41 #include – INCLUDE ADDITIONAL SOURCE FILE

4.41.1 Syntax

Preferred:

#include include_file
#include "include_file"
#include <include_file>

Supported:

include include_file
include "include_file"
include <include_file>

4.41.2 Description

The specified file is read in as source code. The effect is the same as if the entire text
of the included file were inserted into the file at the location of the include statement.
Upon end-of-file, source code assembly will resume from the original source file. Up to
5 levels of nesting are permitted. Up to 255 include files are allowed.

If include_file contains any spaces, it must be enclosed in quotes or angle
brackets. If a fully qualified path is specified, only that path will be searched. Otherwise,
the search order is:

• current working directory
• source file directory
• MPASM assembler executable directory

4.41.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

You should use the include directive once to include that standard header file for your
selected processor. This file contains defined register, bit and other names for a
specific processor, so there is no need for you to define all of these in your code.
DS33014J-page 92 © 2005 Microchip Technology Inc.

Directives
4.41.4 See Also

#define #undefine

4.41.5 Simple Example

#include p18f452.inc ;standard include file
#include "c:\Program Files\mydefs.inc" ;user defines

4.42 list – LISTING OPTIONS

4.42.1 Syntax

list [list_option, ..., list_option]

4.42.2 Description

Occurring on a line by itself, the list directive has the effect of turning listing output
on, if it had been previously turned off. Otherwise, one of a list of options can be
supplied to control the assembly process or format the listing file.

4.42.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

Options that may be used with the list directive are specified below.

Option Default Description

b=nnn 8 Set tab spaces.

c=nnn 132 Set column width.

f=format INHX8M Set the hex file output. format can be INHX32,
INHX8M or INHX8S.
Note: Hex file format is set in MPLAB® IDE
(Build Options dialog).

free FIXED Use free-format parser. Provided for backward
compatibility.

fixed FIXED Use fixed-format parser.

mm={ON|OFF} On Print memory map in list file.

n=nnn 60 Set lines per page.

p=type None Set processor type; for example, PIC16F54. See
also processor.
Note: Processor type is set in MPLAB IDE
(Configure>Device).

pe=type None Set processor type and enable extended
instruction set; for example, LIST
pe=PIC18F4620
Only valid with processors which support the
extended instruction set and the generic
processor PIC18XXX. Is overridden by
command-line option /y- (disable extended
instruction set).
Note: Processor type is set in MPLAB IDE
(Configure>Device).

r=radix hex Set radix: hex, dec, oct. See also radix.

st={ON|OFF} On Print symbol table in list file.

t={ON|OFF} Off Truncate lines of listing (otherwise wrap).

w={0|1|2} 0 Set the message level. See also errorlevel.
© 2005 Microchip Technology Inc. DS33014J-page 93

Assembler/Linker/Librarian User’s Guide
4.42.4 See Also

errorlevel expand noexpand nolist processor radix

4.42.5 Simple Example

Set the processor type to PIC18F452, the hex file output format to INHX32 and the
radix to decimal.

list p=18f452, f=INHX32, r=DEC

4.43 local – DECLARE LOCAL MACRO VARIABLE

4.43.1 Syntax

Preferred:

local label[,label...]

Supported:

.local label[,label...]

4.43.2 Description

Declares that the specified data elements are to be considered in local context to the
macro. label may be identical to another label declared outside the macro definition;
there will be no conflict between the two.

If the macro is called recursively, each invocation will have its own local copy.

4.43.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

If you use a macro more than once and there is a label in it, you will get a “Duplicate
Label” error unless you use this directive.

4.43.4 See Also

endm macro

4.43.5 Simple Example

<main code segment>
 :
 :
len equ 10 ; global version
size equ 20 ; note that a local variable
 ; may now be created and modified
test macro size
 local len, label ; local len and label
len set size ; modify local len
label res len ; reserve buffer
len set len-20
endm ; end macro

x={ON|OFF} On Turn macro expansion on or off.

Option Default Description

Note: All list options are evaluated as decimal numbers by default.
DS33014J-page 94 © 2005 Microchip Technology Inc.

Directives
4.43.6 Application Example – local

This code demonstrates the utility of local directive, which declares that the specified
data elements are to be considered in local context to the macro.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

incr equ 2 ;Assembler variable incr is set
 ;equal to 2.

add_incr macro ;Declaration of macro 'add_incr'.
 local incr ;Local assembler variable 'incr'.

The same name incr is used in the main code, where its value is set to 2.

incr set 3 ;Local 'incr' is set to 3, in
 ;contrast to 'incr' value
 ;of 2 in main code.

 clrw ;w register is set to zero
 addlw incr ;w register is added to incr and
 ;result placed back
endm ;in w register.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 clrw ;W register set to zero.

 addlw incr ;W register is added with the
 ;value of incr which is now equal
 ;to 2.

 add_incr ;W register is added with the
 ;value of incr which is now equal
 ;to 3 (value set locally in the
 ;macro add_incr).

 clrw ;W register is set to zero again.

 addlw incr ;incr is added to W register and
 ;result placed in W register.
 ;incr value is again 2, not
 ;affected by the value set in the
 ;macro.

 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 95

Assembler/Linker/Librarian User’s Guide
4.44 macro – DECLARE MACRO DEFINITION

4.44.1 Syntax

label macro [arg, ..., arg]

4.44.2 Description

A macro is a sequence of instructions that can be inserted in the assembly source code
by using a single macro call. The macro must first be defined, then it can be referred to
in subsequent source code.

Arguments are read in from the source line, stored in a linked list and then counted.
The maximum number of arguments would be the number of arguments that would fit
on the source line, after the label and macro terms. Therefore, the maximum source
line length is 200 characters.

A macro can call another macro, or may call itself recursively. The maximum number
of nested macro calls is 16.

Please refer to Chapter 7. “Macro Language” for more information.

4.44.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

4.44.4 See Also

ENDM EXITM LOCAL

4.44.5 Simple Example

;Define macro Read
Read macro device, buffer, count
 movlw device
 movwf ram_20
 movlw buffer ; buffer address
 movwf ram_21
 movlw count ; byte count
 call sys_21 ; subroutine call
endm
 :
;Use macro Read
Read 0x0, 0x55, 0x05

4.44.6 Application Example – macro/endm

This code demonstrates the utility of macro directive, which is used to define a macro.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

result equ 0x20 ;Assign value 20H to label
 ;result.

 ORG 0x0000 ;The following code will be placed
 ;in reset address 0.
 goto start ;Jump to an address whose label is
 ;'start'.

add MACRO num1,num2 ;'add' is a macro. The values of
 ;'num1' and 'num2' must be passed
 ;to this macro.
DS33014J-page 96 © 2005 Microchip Technology Inc.

Directives
 movlw num1 ;Load W register with a literal
 ;value assigned to the label
 ;'num1'.

 movwf result ;Load W register to an address
 ;location assigned to the label
 ;'result'.

 movlw num2 ;Load W register with a literal
 ;value assigned to the label
 ;'num2'.

 addwf result ;Add W register with the memory
 ;location addressed by 'result'
 ;and load the result back to
 ;'result'.

 endm ;end of 'add' MACRO

 ORG 0x0010 ;Main program starts at 10H.

start ;The label 'start' is assigned an
 ;address 10H.

 add .100,.90 ;Call 'add' MACRO with decimal
 ;numbers 100 and 90 assigned to
 ;'num1' and 'num2' labels,
 ;respactively. 100 and 90 will be
 ;added and the result will be in
 ;'result'.

 end

4.45 __maxram – DEFINE MAXIMUM RAM LOCATION

4.45.1 Syntax

__maxram expr

4.45.2 Description

The __maxram and __badram directives together flag accesses to unimplemented
registers. __maxram defines the absolute maximum valid RAM address and initializes
the map of valid RAM addresses to all addresses valid at and below expr. expr must
be greater than or equal to the maximum page 0 RAM address and less than 1000H.
This directive is designed for use with the __badram directive. Once the
__maxram directive is used, strict RAM address checking is enabled, using the RAM
map specified by __badram.

__maxram can be used more than once in a source file. Each use redefines the
maximum valid RAM address and resets the RAM map to all locations.

4.45.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

Note: maxram is preceded by two underline characters.
© 2005 Microchip Technology Inc. DS33014J-page 97

Assembler/Linker/Librarian User’s Guide
This directive is not commonly used in user code, as RAM and ROM details are
handled by the include files (*.inc) or linker script files (*.lkr).

4.45.4 See Also

__badram

4.45.5 Simple Example

See the examples for __badram.

4.46 __maxrom – DEFINE MAXIMUM ROM LOCATION

4.46.1 Syntax

__maxrom expr

4.46.2 Description

The __maxrom and __badrom directives together flag accesses to unimplemented
registers. __maxrom defines the absolute maximum valid ROM address and initializes
the map of valid ROM addresses to all addresses valid at and below expr. expr must
be greater than or equal to the maximum ROM address of the target device. This
directive is designed for use with the __badrom directive. Once the __maxrom
directive is used, strict ROM address checking is enabled, using the ROM map
specified by __badrom.

__maxrom can be used more than once in a source file. Each use redefines the
maximum valid ROM address and resets the ROM map to all locations.

4.46.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not commonly used in user code, as RAM and ROM details are
handled by the include files (*.inc) or linker script files (*.lkr).

4.46.4 See Also

__badrom

4.46.5 Simple Example

See the examples for __badrom.

4.47 messg – CREATE USER DEFINED MESSAGE

4.47.1 Syntax

messg "message_text"

4.47.2 Description

Causes an informational message to be printed in the listing file. The message text can
be up to 80 characters. Issuing a messg directive does not set any error return codes.

Note: maxrom is preceded by two underline characters.
DS33014J-page 98 © 2005 Microchip Technology Inc.

Directives
4.47.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive may be used to generate any desired message. It can be useful with
conditional assembly, to verify in the assembled program which code was built.

4.47.4 See Also

error

4.47.5 Simple Example

mssg_macro macro
 messg "mssg_macro-001 invoked without argument"
endm

4.47.6 Application Example – messg

This program demonstrates the messg assembler directive, which sets a message to
be printed in the listing file and error file.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 variable baudrate ;variable used to define
 ;required baud rate

 baudrate set D'5600' ;Enter the required value of
 ;baud rate here.

 if (baudrate!=D'1200')&&(baudrate!=D'2400')&&
 (baudrate!=D'4800')&&(baudrate!=D'9600')&&
 (baudrate!=D'19200')
 error "Selected baud rate is not supported"
 messg "only baud rates 1200,2400,4800,9600 & 19200 Hz "&&
 "are supported"
 endif

The if-endif code outputs error and messg if the baud rate selected is other than
1200, 2400, 4800, 9600 or 19200 Hz.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 99

Assembler/Linker/Librarian User’s Guide
4.48 noexpand – TURN OFF MACRO EXPANSION

4.48.1 Syntax

noexpand

4.48.2 Description and Usage

Turns off macro expansion in the listing file.

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

4.48.3 See Also

expand

4.49 nolist – TURN OFF LISTING OUTPUT

4.49.1 Syntax

nolist

4.49.2 Description and Usage

Turn off listing file output.

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

4.49.3 See Also

list

4.50 org – SET PROGRAM ORIGIN

4.50.1 Syntax

[label] org expr

4.50.2 Description

Set the program origin for subsequent code at the address defined in expr. If label is
specified, it will be given the value of the expr. If no org is specified, code generation
will begin at address zero.

For PIC18 devices, only even-numbered expr values are allowed.

When generating an object file, the org directive is interpreted as introducing an
absolute CODE section with an internally generated name. For example:

 L1: org 0x200

is interpreted as:

 .scnname CODE 0x200
 L1:

where .scnname is generated by the assembler, and will be distinct from every name
previously generated in this context.

4.50.3 Usage

This directive is used in the following types of code: absolute. For information on types
of code, see Section 1.6 “Assembler Operation”.
DS33014J-page 100 © 2005 Microchip Technology Inc.

Directives
org is commonly used in single-file assembly programs whenever code needs to be
placed at a particular location. Commonly used values are 0x0 (reset), 0x4 (PIC16
device interrupt vector), 0x8 (PIC18 device high-priority interrupt vector) and 0x18
(PIC18 device low-priority interrupt vector).

4.50.4 See Also

fill res end

4.50.5 Simple Example

int_1 org 0x20
 ; Vector 20 code goes here
int_2 org int_1+0x10
 ; Vector 30 code goes here

4.50.6 PIC16 Application Example – org

This example shows the usage of the org directive. Code generation begins at an
address specified by org address. The origin of a data table also can be specified by
this directive. A data table may be placed either in a program memory region or in an
EE data memory region, as in case of a PICmicro device with EE data Flash.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 org 0x0000 ;The following code will be
 ;placed in reset address 0.
 goto Main ;Jump to an address whose label
 ;is 'Main'.

 org 0x0004 ;The following code will be
 ;placed in interrupt address 4.
 goto int_routine ;Jump to an address whose label
 ;is 'int_routine'.

 org 0x0010 ;The following code section will
 ;placed starting from address 10H.
Main
 ; ;Write your main program here.
 ;
 ;
 goto Main ;Loop back to 'Main'.

 org 0x0100 ;The following code section will
 ;be placed starting from address
 ;100H.
int_routine
 ;
 ; ;Write your interrupt service
 ; ;routine here.
 retfie ;Return from interrupt.

 org 0x1000 ;You can create a data or
 ;character table starting from
 ;any address in program memory.
 ;In this case the address is
 ;1000h.

ch_tbl1 da "PICwithFLASH" ;6 program memory locations
 ;(starting from 1000h) will
© 2005 Microchip Technology Inc. DS33014J-page 101

Assembler/Linker/Librarian User’s Guide
 ;be filled with six 14-bit
 ;packed numbers, each
 ;representing two 7-bit ASCII
 ;characters.

 org 0x2100 ;The absolue address 2100h is
 ;mapped to the 0000 location of
 ;EE data memory in PIC16Fxxx.
 ;You can create a data or
 ;character table starting from
 ;any address in EE data memory.

ch_tbl2 de "PICwithFLASH" ;12 EE data memory locations
 ;(starting from 0) will be
 ;filled with 12 ASCII
 ;characters.

 end

4.50.7 PIC18 Application Example – org

This example shows the usage of the org directive. Code generation begins at an
address specified by org address. The origin of a data table also can be specified by
this directive. A data table may be placed either in a program memory region or in an
EE data memory region, as in case of a PICmicro device with EE data Flash.

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

 org 0x0000 ;The following code will be
 ;programmed in reset address 0.
 goto Main ;Jump to an address whose label is
 ;'Main'.

 org 0x0008 ;The following code will be
 ;programmed in high priority
 ;interrupt address 8.
 goto int_hi ;Jump to an address whose label is
 ;'int_hi'.

 org 0x0018 ;The following code will be
 ;programmed in low priority
 ;interrupt address 18h.
 goto int_lo ;Jump to an address whose label is
 ;'int_lo'.

 org 0x0020 ;The following code section will
 ;be programmed starting from
 ;address 20H.
Main
 ; ;Write your main program here.
 ;
 ;
 goto Main ;Loop back to 'Main'

 org 0x0100 ;The following code section will
 ;be programmed starting from
 ;address 100H.

int_hi
 ;
DS33014J-page 102 © 2005 Microchip Technology Inc.

Directives
 ; ;Write your high priority
 ; ;interrupt service routine here.
 retfie ;Return from interrupt.

 org 0x0200 ;The following code section will
 ;be programmed starting from
 ;address 200H.

int_lo
 ;
 ; ;Write your low priority
 ; ;interrupt service routine here.
 retfie ;Return from interrupt.

 org 0x1000 ;You can create a data or
 ;character table starting from any
 ;address in program memory. In
 ;this case the address is 1000h.

ch_tbl1 db "PICwithFLASH"

 end

4.51 page – INSERT LISTING PAGE EJECT

4.51.1 Syntax

page

4.51.2 Description and Usage

Inserts a page eject into the listing file.

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

4.51.3 See Also

list subtitle title

4.52 pagesel – GENERATE PAGE SELECTING CODE (PIC10/12/16 MCUs)

4.52.1 Syntax

pagesel label

4.52.2 Description

An instruction to the linker to generate page selecting code to set the page bits to the
page containing the designated label. Only one label should be specified. No
operations can be performed on label. label must have been previously defined.

The linker will generate the appropriate page selecting code. For 12-bit instruction
width (PIC10F, some PIC12/PIC16) devices, the appropriate bit set/clear instructions
on the STATUS register will be generated. For 14-bit instruction width (most
PIC12/PIC16) devices, a combination of BSF and BCF commands will be used to
adjust bits 3 and 4 of the PCLATH register. If the device contains only one page of
program memory, no code will be generated.

For PIC18 devices, this command will do nothing as these devices do not use paging.
© 2005 Microchip Technology Inc. DS33014J-page 103

Assembler/Linker/Librarian User’s Guide
4.52.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

This directive saves you from having to manually code page bit changes. Also, since it
automatically generates code, the code is much more portable.

If you are using relocatable code and your device has more than 2k program memory
(or 0.5K for 12-bit instruction width devices), it is recommended that you use this
directive, especially when code must jump between two or more code sections.

If you wish to indicate the start address of a RETLW table or a jump table for computed
GOTOs, you must use the pageselw directive.

4.52.4 See Also

bankisel banksel

4.52.5 Simple Example

pagesel GotoDest
goto GotoDest
 :
pagesel CallDest
call CallDest

4.52.6 Application Example – pagesel

This program demonstrates the pagesel directive, which generates the appropriate
code to set/clear PCLATH bits. This allows easier use of paged memory such as found
on PIC16 devices.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM0 CODE 0x500 ;The code section named PGM1 is
 ;placed at 0x500.
start
 pagesel page1_pgm ;address bits 12 & 11 of
 ;page1_pgm are copied to PCLATH
 ;4 & 3 respectively.
 goto page1_pgm

PGM1 CODE 0x900 ;The code section named PGM1 is
 ;placed at 0x900. Label
 ;page1_pgm is located in this
page1_pgm ;code section.
 goto $;Go to current line (loop here)
 end
DS33014J-page 104 © 2005 Microchip Technology Inc.

Directives
4.53 pageselw – GENERATE PAGE SELECTING CODE USING WREG
COMMANDS (PIC10/12/16 MCUs)

4.53.1 Syntax

pageselw label

4.53.2 Description

An instruction to the linker to generate page selecting code to set the page bits to the
page containing the designated label. Only one label should be specified. No
operations can be performed on label. label must have been previously defined.

The linker will generate the appropriate page selecting code. For 12-bit instruction
width (PIC10F, some PIC12/PIC16) devices, the appropriate bit set/clear instructions
on the STATUS register will be generated. For 14-bit instruction width (most
PIC12/PIC16) devices, MOVLW and MOVWF instructions will be generated to modify the
PCLATH. If the device contains only one page of program memory, no code will be
generated.

For PIC18 devices, this command will do nothing as these devices do not use paging.

4.53.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

This directive saves you from having to manually code page bit changes. Also, since it
automatically generates code, the code is much more portable.

If you are using relocatable code and your device has more than 2k program memory
(or 0.5K for 12-bit instruction width devices), it is recommended that you use this
directive, especially when code must jump between two or more code sections.

You must use this directive instead of pagesel if you wish to indicate the start address
of a RETLW table or a jump table for computed GOTOs. Only then will all the 5 top-most
bits of the PC will be loaded with the appropriate value when an 8-bit offset is added to
the PC. The 256-word boundaries will still have to be considered, as discussed in
Application Note AN586, “Macros for Page and Bank Switching”.

4.53.4 See Also

bankisel banksel

4.53.5 Simple Example

 pageselw CommandTableStart ;Get the byte read and use it to
 movlw CommandTableStart ;index into our jump table. If
 addwf Comm.RxTxByte,w ;we crossed a 256-byte boundary,
 btfsc STATUS,C ;then increment PCLATH. Then load the
 incf PCLATH,f ;program counter with computed goto.
 movwf PCL

CommandTableStart
 goto GetVersion ;0x00 - Get Version
 goto GetRTSample ;0x01 - Get Real Time sample
 goto Configure ;0x02 - stub
 goto Go ;0x03 - stub
 goto ReadBuffer ;0x04 - Read Buffer, just sends Vout
 goto AreYouThroughYet ;0x05
 goto CommDone ;0x06
 goto CommDone ;0x07
© 2005 Microchip Technology Inc. DS33014J-page 105

Assembler/Linker/Librarian User’s Guide
4.54 processor – SET PROCESSOR TYPE

4.54.1 Syntax

processor processor_type

4.54.2 Description

Sets the processor type to processor_type.

4.54.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not generally used as the processor is set in MPLAB IDE
(Configure>Device). If it must be set in code, use processor or the list directive
option p= to set the processor.

4.54.4 See Also

list

4.54.5 Simple Example

processor 16f877a ;Sets processor to PIC16F877A

4.55 radix – SPECIFY DEFAULT RADIX

4.55.1 Syntax

radix default_radix

4.55.2 Description

Sets the default radix for data expressions. The default radix is hex. Valid radix values
are:

• hex – hexadecimal (base 16)
• dec – decimal (base 10)
• oct – octal (base 8)

You may also specify a radix using the list directive. For specifying the radix of
constants, see Section 3.4 “Numeric Constants and Radix”.

4.55.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

For many programs, the default radix, hex, is used and there is no need to set the radix.
However, if you need to change the radix in your program, you should exercise care,
as all numeric values following the radix declaration will use that radix value. See the
radix example for more on the implications of changing the radix.

Use the radix directive or the list directive option r= to change the radix in your
code.

4.55.4 See Also

list

4.55.5 Simple Example

radix dec
DS33014J-page 106 © 2005 Microchip Technology Inc.

Directives
4.55.6 Application Example – radix

This example shows the usage of the radix directive for data presentation. If not
declared, then the default radix is in hex(adecimal).

 list r=dec ;Set the radix as decimal.
 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 movlw 50H ;50 is in hex
 movlw 0x50 ;Another way of declaring 50 hex
 movlw 50O ;50 is in octal
 movlw 50 ;50 is not declared as hex or
 ;octal or decimal. So by default
 ;it is in decimal as default radix
 ;is declared as decimal.

 radix oct ;Use ‘radix’ to declare default
 ;radix as octal.

 movlw 50H ;50 is in hex.
 movlw 0x50 ;Another way of declaring 50 hex.
 movlw .50 ;50 is in decimal.
 movlw 50 ;50 is not declared as hex or
 ;octal or decimal. So by default
 ;it is in octal as default radix
 ;is declared as octal.

 radix hex ;Now default radix is in hex.

 movlw .50 ;50 is declared in decimal.
 movlw 50O ;50 is declared in octal
 movlw 50 ;50 is not declared as hex or
 ;octal or decimal. So by default
 ;it is in hex as default radix
 ;is declared as hex.

end

4.56 res – RESERVE MEMORY

4.56.1 Syntax

[label] res mem_units

4.56.2 Description

Causes the memory location pointer to be advanced from its current location by the
value specified in mem_units. In relocatable code (using MPLINK linker), res can be
used to reserve data storage. In non-relocatable code, label is assumed to be a
program memory address.

Address locations are defined in words for PIC12/16 MCUs, and bytes for
PIC18 MCUs.

4.56.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

The most common usage for res is for data storage in relocatable code.
© 2005 Microchip Technology Inc. DS33014J-page 107

Assembler/Linker/Librarian User’s Guide
4.56.4 See Also

fill org equ cblock

4.56.5 Simple Example

buffer res 64 ; reserve 64 address locations of storage

4.56.6 Application Example – res

This example shows the advantage of res directive in developing relocatable code.
The program calculates the perimeter of a rectangle. Length and width of the rectangle
will be stored in buffers addressed by length and width. The calculated perimeter
will be stored in the double-precision buffer addressed by perimeter.

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

 UDATA ;This directive allows the
 ;following data to be placed only
 ;in the data area.

 perimeter res 2 ;Two locations of memory are
 ;reserved for the label
 ;'perimeter'. Addresses of the
 ;memory locations will be
 ;allocated by the linker.
 length res 1 ;One location of memory is
 ;reserved for the label 'length'.
 ;Address of the memory location
 ;will be allocated by the linker.
 width res 1 ;One location of memory is
 ;reserved for the label 'width'.
 ;Address of the memory location
 ;will be allocated by the linker.

Start CODE 0x0000 ;Following code will be placed in
 ;address 0.

Here the directive code has the same effect as org. But org is used with
MPASM assembler to generate absolute code and code is used with MPLINK linker to
generate an object file. code is also different in that an address is not normally
specified; the linker handles the allocation of space, both in program Flash and data
RAM memory.

 goto PER_CAL ;Jump to label PER_CAL

 CODE ;CODE directive here dictates that
 ;the following lines of code will
 ;be placed in program memory, but
 ;the starting address will be
 ;decided by the linker.

PER_CAL
 clrf perimeter+1 ;Clear the high byte of the label
 ;'perimeter'.
 movf length,w ;Move the data present in the
 ;register addressed by 'length'
 ;to 'w'.
 addwf width,w ;Add data in 'w' with data in the
 ;register addressed by 'width'.
DS33014J-page 108 © 2005 Microchip Technology Inc.

Directives
 ;STATUS register carry bit C
 ;may be affected.
 movwf perimeter ;Move 'w' to the perimeter low
 ;byte at address 20H. Carry bit
 ;is unaffected.
 rlf perimeter+1 ;Increment register 21H if carry
 ;was generated. Also clear carry
 ;if bit was set.
 rlf perimeter ;Multiply register 20H by 2.
 ;Carry bit may be affected.
 rlf perimeter+1 ;Again, increment register 21H
 ;if carry was generated.

The previous two lines of code will multiply (by left-shifting one bit) the intermediate
result by 2.

 goto $;Go to current line (loop here)
 end

4.57 set – DEFINE AN ASSEMBLER VARIABLE

4.57.1 Syntax

Preferred:

label set expr

Supported:

label .set expr

4.57.2 Description

label is assigned the value of the valid MPASM assembler expression specified by
expr. The set directive is functionally equivalent to the equ directive except that set
values may be subsequently altered by other set directives.

4.57.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

Because set directive values may be altered by later set directives, set is particularly
useful when defining a variable in a loop (e.g., a while loop).

4.57.4 See Also

equ variable while

4.57.5 Simple Example

area set 0
width set 0x12
length set 0x14
area set length * width
length set length + 1

4.57.6 Application Example – set/equ

This example shows the usage of the set directive, used for creating symbols which
may be used in MPASM assembler expressions only. The symbols created with this
directive do not occupy any physical memory location on the microcontroller.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.
© 2005 Microchip Technology Inc. DS33014J-page 109

Assembler/Linker/Librarian User’s Guide
 perimeter set 0 ;The label 'perimeter' is
 ;assigned value 0.
 area set 0 ;The label 'area' is assigned
 ;value 0.

The value assigned by the set directive may be reassigned later.

 lngth equ 50H ;The label 'lngth' is assigned
 ;the value 50H.
 wdth equ 25H ;The label 'wdth' is assigned
 ;the value 25H.

The value assigned by the equ directive may not be reassigned later.

 perimeter set 2*(lngth+wdth) ;Both 'perimeter' and
 area set lngth*wdth ;'area' values are
 ;reassigned.
end

4.58 space – INSERT BLANK LISTING LINES

4.58.1 Syntax

Preferred:

space expr

Supported:

spac expr

4.58.2 Description and Usage

Insert expr number of blank lines into the listing file.

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

4.58.3 See Also

list

4.58.4 Simple Example

space 3 ;Inserts three blank lines

4.59 subtitle – SPECIFY PROGRAM SUBTITLE

4.59.1 Syntax

Preferred:

subtitle "sub_text"

Supported:

stitle "sub_text"
subtitl "sub_text"
DS33014J-page 110 © 2005 Microchip Technology Inc.

Directives
4.59.2 Description and Usage

sub_text is an ASCII string enclosed in double quotes, 60 characters or less in
length. This directive establishes a second program header line for use as a subtitle in
the listing output.

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

4.59.3 See Also

list title

4.59.4 Simple Example

subtitle "diagnostic section"

4.60 title – SPECIFY PROGRAM TITLE

4.60.1 Syntax

title "title_text"

4.60.2 Description and Usage

title_text is a printable ASCII string enclosed in double quotes. It must be 60
characters or less. This directive establishes the text to be used in the top line of each
page in the listing file.

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

4.60.3 See Also

list subtitle

4.60.4 Simple Example

title "operational code, rev 5.0"

4.61 udata – BEGIN AN OBJECT FILE UNINITIALIZED DATA SECTION

4.61.1 Syntax

[label] udata [RAM_address]

4.61.2 Description

This directive declares the beginning of a section of uninitialized data. If label is not
specified, the section is named .udata. The starting address is initialized to the
specified address or will be assigned at link time if no address is specified. No code can
be generated in this segment. The res directive should be used to reserve space for
data.

4.61.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

Note: Two sections in the same source file are not permitted to have the same
name.
© 2005 Microchip Technology Inc. DS33014J-page 111

Assembler/Linker/Librarian User’s Guide
For relocatable code, this directive is used to create a data (RAM) section. For absolute
code, do not use this directive. Use directives equ or cblock.

4.61.4 See Also

extern global idata udata_acs udata_ovr udata_shr

4.61.5 Simple Example

 udata
Var1 res 1
Double res 2

4.61.6 Application Example – udata

This program demonstrates the udata directive, which declares the beginning of a
section of uninitialized data. udata does not set (initialize) the starting value of the
variables; you must do this in code.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

group1 udata 0x20 ;group1 data stored at locations
 ;starting at 0x20.
 group1_var1 res 1 ;group1_var1 located at 0x20.
 group1_var2 res 1 ;group1_var2 located at 0x21.

group2 udata ;Declaration of group2 data. The
 ;addresses for variables under
 group2_var1 res 1 ;this data section are allocated
 group2_var2 res 1 ;automatically by the linker.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 banksel group1_var1
 clrf group1_var1
 clrf group1_var2

 banksel group2_var1
 clrf group2_var1
 clrf group2_var2

 goto $;Go to current line (loop here)
 end
DS33014J-page 112 © 2005 Microchip Technology Inc.

Directives
4.62 udata_acs – BEGIN AN OBJECT FILE ACCESS UNINITIALIZED DATA
SECTION (PIC18 MCUs)

4.62.1 Syntax

[label] udata_acs [RAM_address]

4.62.2 Description

This directive declares the beginning of a section of access uninitialized data. If label
is not specified, the section is named .udata_acs. The starting address is initialized
to the specified address or will be assigned at link time if no address is specified. This
directive is used to declare variables that are allocated in access RAM of PIC18
devices. No code can be generated in this segment. The res directive should be used
to reserve space for data.

4.62.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

This directive is similar to udata, except that it is used only for PIC18 devices and will
only place variables in access RAM. PIC18 devices have an area of RAM known as
access RAM. Variables in access memory can be used no matter where the bank
select register (BSR) is pointing. It is very useful for frequently-used and global
variables.

4.62.4 See Also

extern global idata udata udata_ovr udata_shr

4.62.5 Simple Example

 udata_acs
Var1 res 1
Double res 2

4.62.6 Application Example – udata_acs

This program demonstrates the udata_acs directive. This directive declares the
beginning of a section of uninitialized data.

 #include p18f452.inc ;Include standard header file
 ;for the selected device.

group1 udata_acs 0x20 ;group1 data stored at access
 ;RAM locations starting at 0x20.
 group1_var1 res 1 ;group1_var1 located at 0x20.
 group1_var2 res 1 ;group1_var2 located at 0x21.

group2 udata_acs ;Declaration of group2 data. The
 ;addresses for data under this
 ;secton are allocated
 ;automatically by the linker.
 group2_var1 res 1 ;All addresses be will allocated
 group2_var2 res 1 ;in access RAM space only.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory

Note: Two sections in the same source file are not permitted to have the same
name.
© 2005 Microchip Technology Inc. DS33014J-page 113

Assembler/Linker/Librarian User’s Guide
 ;location 0x0. The instruction
 ;'goto start' is placed in
 ;code section RST.
 goto start ;Jumps to the location labelled
 ;'start'.

PGM CODE ;This is the begining of the code
 ;section named PGM. It is a
 ;relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start

 clrf group1_var1,A ;group1_var1 initialized to zero
 clrf group1_var2,A ;group1_var2 initialized to zero

 clrf group2_var1,A ;group2_var1 initialized to zero
 clrf group2_var2,A ;group2_var2 initialized to zero

 goto $;Go to current line (loop here)
 end

In the code above, “A” references the access RAM. This A designation can be explicitly
stated by the code, but is not needed since the assembler will automatically locate
variables in access memory, if possible.

4.63 udata_ovr – BEGIN AN OBJECT FILE OVERLAID UNINITIALIZED
DATA SECTION

4.63.1 Syntax

[label] udata_ovr [RAM_address]

4.63.2 Description

This directive declares the beginning of a section of overlaid uninitialized data. If label
is not specified, the section is named .udata_ovr. The starting address is initialized
to the specified address or will be assigned at link time if no address is specified. The
space declared by this section is overlaid by all other udata_ovr sections of the same
name. It is an ideal way of declaring temporary variables since it allows multiple
variables to be declared at the same memory location. No code can be generated in
this segment. The res directive should be used to reserve space for data.

4.63.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

This directive is similar to udata, except that it allows you to reuse data space by
“overlaying” one data area on another. It is used for temporary variables, as each data
section may overwrite (and thus share) the same RAM address locations.

4.63.4 See Also

extern global idata udata udata_acs udata_shr

Note: Two sections in the same source file are not permitted to have the same
name.
DS33014J-page 114 © 2005 Microchip Technology Inc.

Directives
4.63.5 Simple Example

Temps udata_ovr
Temp1 res 1
Temp2 res 1
Temp3 res 1
Temps udata_ovr
LongTemp1 res 2 ; this will be a variable at the
 ; same location as Temp1 and Temp2
LongTemp2 res 2 ; this will be a variable at the
 ; same location as Temp3

4.63.6 Application Example – udata_ovr

This program demonstrates the udata_ovr directive. This directive declares the
beginning of a section of overlaid uninitialized data.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

same_var udata_ovr 0x20 ;Declares an overlayed
 ;uninitialized data section
 ;named'same_var' starting at
 var1 res 1 ;location 0x20.

same_var udata_ovr 0x20 ;Declares an overlayed
 ;uninitialized data section
 var2 res 1 ;with the same name as the one
 ;declared above. Thus variables
 ;var1 and var2 are allocated
 ;at the same address.

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 banksel var1 ;Any operation on var1 affects
 movlw 0xFF ;var2 also since both variables
 movwf var1 ;are overlaid.

 comf var2

 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 115

Assembler/Linker/Librarian User’s Guide
4.64 udata_shr – BEGIN AN OBJECT FILE SHARED UNINITIALIZED DATA
SECTION (PIC12/16 MCUs)

4.64.1 Syntax

[label] udata_shr [RAM_address]

4.64.2 Description

This directive declares the beginning of a section of shared uninitialized data. If label
is not specified, the section is named .udata_shr. The starting address is initialized
to the specified address or will be assigned at link time if no address is specified. This
directive is used to declare variables that are allocated in RAM that is shared across all
RAM banks (i.e. unbanked RAM). No code can be generated in this segment. The res
directive should be used to reserve space for data.

4.64.3 Usage

This directive is used in the following types of code: relocatable. For information on
types of code, see Section 1.6 “Assembler Operation”.

This directive is similar to udata, except that it is only used on parts with memory
accessible from multiple banks. udata_shr sections are used with SHAREBANK
locations in the linker script, where as udata sections are used with DATABANK
locations in the linker script. See the data sheet for the PIC16F873A for a specific
example.

4.64.4 See Also

extern global idata udata udata_acs udata_ovr

4.64.5 Simple Example

Temps udata_shr
Temp1 res 1
Temp2 res 1
Temp3 res 1

4.64.6 Application Example – udata_shr

This program demonstrates the udata_shr directive. This directive declares the
beginning of a section of shared uninitialized data. This directive is used to declare
variables that are allocated in RAM that is shared across all RAM banks (i.e. unbanked
RAM).

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

shared_data udata_shr ;Declares the beginning of a data
 ;section named 'shared data',
 var res 1 ;which is shared by all banks.
 ;'var' is the location which can
 ;be accessed irrespective of
 ;banksel bits.

bank0_var udata 0X20 ;Declares beginning of a data
 var0 res 1 ;section named 'bank0_var',
 ;which is in bank0. var0 is
 ;allocated the address 0x20.

Note: Two sections in the same source file are not permitted to have the same
name.
DS33014J-page 116 © 2005 Microchip Technology Inc.

Directives
bank1_var udata 0xa0 ;Declares beginning of a data
 var1 res 1 ;section named 'bank1_var',
 ;which is in bank1. var1 is
 ;allocated the addess 0xa0

bank2_var udata 0x120 ;Declares beginning of a data
 var2 res 1 ;section named 'bank2_var',
 ;which is in bank2. var2 is
 ;allocated the addess 0x120

bank3_var udata 0x1a0 ;Declares beginning of a data
 var3 res 1 ;section named 'bank3_var',
 ;which is in bank3. var3 is
 ;allocated the addess 0x1a0

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.
start
 banksel var0 ;Select bank0.
 movlw 0x00
 movwf var ;var is accessible from bank0.

 banksel var1 ;Select bank1.
 movlw 0x01
 movwf var ;var is accessible from bank1
 ;also.

 banksel var2 ;Select bank2.
 movlw 0x02
 movwf var ;var is accessible from bank2
 ;also.

 banksel var3 ;Select bank3.
 movlw 0x03
 movwf var ;var is accessible from bank3
 ;also.

 goto $;Go to current line (loop here)
 end

4.65 #undefine – DELETE A SUBSTITUTION LABEL

4.65.1 Syntax

#undefine label
© 2005 Microchip Technology Inc. DS33014J-page 117

Assembler/Linker/Librarian User’s Guide
4.65.2 Description

label is an identifier previously defined with the #define directive. The symbol
named is removed from the symbol table.

4.65.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is most often used with the ifdef and ifndef directives, which look for
the presence of an item in the symbol table.

4.65.4 See Also

#define #include ifdef ifndef

4.65.5 Simple Example

#define length 20
:
#undefine length

4.65.6 Application Example – #define/#undefine

See this example under #define.

4.66 variable – DECLARE SYMBOL VARIABLE

4.66.1 Syntax

variable label[=expr][,label[=expr]...]

4.66.2 Description

Creates symbols for use in MPASM assembler expressions. Variables and constants
may be used interchangeably in expressions.

The variable directive creates a symbol that is functionally equivalent to those created
by the set directive. The difference is that the variable directive does not require that
symbols be initialized when they are declared.

The variable values cannot be updated within an operand. You must place variable
assignments, increments and decrements on separate lines.

4.66.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is most used for conditional assembly code.

4.66.4 See Also

constant set

4.66.5 Simple Example

variable RecLength=64 ; Set Default
 ; RecLength
constant BufLength=512 ; Init BufLength

Note: variable is not used to declare a run-time variable, but a variable that is
used by the assembler. To create a run-time variable, refer to the directives
res, equ or cblock.
DS33014J-page 118 © 2005 Microchip Technology Inc.

Directives
 . ; RecLength may
 . ; be reset later
 . ; in RecLength=128
 . ;
constant MaxMem=RecLength+BufLength ;CalcMaxMem

4.66.6 Application Example – variable/constant

This example shows the usage of the variable directive, used for creating symbols
which may be used in MPASM assembler expressions only. The symbols created with
this directive do not occupy any physical memory location of the microcontroller.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 variable perimeter=0 ;The symbol 'perimeter' is
 ;initialized to 0
 variable area ;If a symbol is declared as
 ;variable, then initialization
 ;is optional, i.e. it may or may
 ;not be initialized.

 constant lngth=50H ;The symbol 'lngth' is
 ;initialized to 50H.
 constant wdth=25H ;The symbol 'wdth' is
 ;initialized to 25H.
 ;A constant symbol always needs
 ;to be initialized.
 perimeter=2*(lngth+wdth);The value of a CONSTANT cannot
 ;be reassigned after having been
 ;initialized once. So 'lngth' and
 ;'wdth' cannot be reassigned. But
 ;'perimeter' has been declared
 ;as variable, and so can be
 ;reassigned.
 area=lngth*wdth

 end

4.67 while – PERFORM LOOP WHILE CONDITION IS TRUE

4.67.1 Syntax

Preferred:

while expr
:
endw

Supported:

.while expr
:
.endw

4.67.2 Description

The lines between the while and the endw are assembled as long as expr evaluates
to TRUE. An expression that evaluates to zero is considered logically FALSE. An
expression that evaluates to any other value is considered logically TRUE. A relational
TRUE expression is guaranteed to return a non-zero value; FALSE a value of zero.
© 2005 Microchip Technology Inc. DS33014J-page 119

Assembler/Linker/Librarian User’s Guide
A while loop can contain at most 100 lines and be repeated a maximum of 256 times.
while loops can be nested up to 8 deep.

4.67.3 Usage

This directive is used in the following types of code: absolute or relocatable. For
information on types of code, see Section 1.6 “Assembler Operation”.

This directive is not an instruction, but used to control how code is assembled, not how
it behaves at run time. Use this directive for conditional assembly.

4.67.4 See Also

endw if

4.67.5 Simple Example

while is not executed at run time, but produces assembly code based on a condition.
View the list file (*.lst) or disassembly window to see the results of this example.

test_mac macro count
 variable i
i = 0
 while i < count
 movlw i
i += 1
 endw
 endm
start
 test_mac 5
 end

4.67.6 Application Example – while/endw

This example shows the usefulness of directive while to perform a loop while a certain
condition is true. This directive is used with the endw directive.

 #include p16f877a.inc ;Include standard header file
 ;for the selected device.

 variable i ;Define the symbol 'i' as a
 ;variable.

mydata udata 0x20 ;Allocate RAM for labels
 reg_hi res 1 ;reg_hi and reg_lo.
 reg_lo res 1

RST CODE 0x0 ;The code section named RST
 ;is placed at program memory
 ;location 0x0. The next two
 ;instructions are placed in
 ;code section RST.
 pagesel start ;Jumps to the location labelled
 goto start ;’start’.

shift_right macro by_n ;Beginning of a macro, which
 ;shifts register data n times.
 ;Code length generated after
 ;assembly, varies depending upon
 ;the value of parameter 'by_n'.
i=0 ;Initialize variable i.
 while i< by_n ;Following 3 lines of assembly
 ;code are repeated as long as
DS33014J-page 120 © 2005 Microchip Technology Inc.

Directives
 ;i< by_n.

Up to 100 lines of codes are allowed inside a while loop.

 bcf STATUS,C ;Clear carry bit.
 rrf reg_hi,F ;reg_hi and reg_lo contains
 rrf reg_lo,F ;16-bit data which is rotated
 ;right through carry.
i+=1 ;Increment loop counter i.

i cannot increment to more than 255 decimal.

 endw ;End while loop. The loop will
 ;break here after i=by_n.
 endm ;End of 'shift_right' macro.

PGM CODE ;This is the begining of the
 ;code section named PGM. It is
 ;a relocatable code section
 ;since no absolute address is
 ;given along with directive CODE.

start
 movlw 0x88 ;Initialize reg_hi and
 movwf reg_hi ;reg_lo for observation.
 movlw 0x44
 movwf reg_lo

 shift_right 3 ;Shift right 3 times the 16-bit
 ;data in reg_hi and reg_lo. This
 ;is an example. A value 8 will
 ;shift data 8 times.
 goto $;Go to current line (loop here)
 end
© 2005 Microchip Technology Inc. DS33014J-page 121

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 122 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 5. Assembler Examples, Tips and Tricks
5.1 INTRODUCTION

The usage of multiple MPASM assembler directives is shown through examples.

Directives are assembler commands that appear in the source code but are not
opcodes. They are used to control the assembler: its input, output, and data allocation.

Many of the assembler directives have alternate names and formats. These may exist
to provide backward compatibility with previous assemblers from Microchip and to be
compatible with individual programming practices. If portable code is desired, it is
recommended that programs be written using the specifications contained within this
document.

For a reference listing of all directives discussed in examples here, please see
Chapter 4. “Directives”.

Topics covered are:

• Example of Displaying Count on Ports
• Example of Port B Toggle and Delay Routines
• Example of Calculations with Variables and Constants
• Example of a 32-Bit Delay Routine
• Example of SPI™ Emulated in Firmware
• Example of Hexadecimal to ASCII Conversion
• Other Sources of Examples
• Tips and Tricks

Note: Although MPASM assembler is often used with MPLINK object linker,
MPASM assembler directives are not supported in MPLINK linker scripts.
See MPLINK object linker documentation for more information on linker
options to control listing and hex file output.
© 2005 Microchip Technology Inc. DS33014J-page 123

Assembler/Linker/Librarian User’s Guide
5.2 EXAMPLE OF DISPLAYING COUNT ON PORTS

Directives highlighted in this example are:

• #include
• end

5.2.1 Program Functional Description

This simple program continually increases the count on PORTA and PORTB. This
count may be displayed in software in the SFR or watch window of MPLAB IDE, or in
hardware on connected LEDs or a scope. The count may be slowed down using a
delay routine (see other examples).

Once the count has increased to 0xFF, it will roll over to 0x00 and begin again.

The application is written as absolute code, i.e., you use only the assembler to
generate the executable (not the assembler and linker).

The standard header file for the processor selected is included using #include. The
port output data latches are then cleared. PORTA must be set up for digital I/O as, on
power-up, several pins are analog. Data direction registers (TRISx) are cleared to set
port pins to outputs. A loop named Loop is entered where the value of each port is
increased indefinitely until the program is halted. Finally, the program is finished with
an end.

5.2.2 Commented Code Listing

;Toggles Port pins with count on PIC18F8720
;PortA pins on POR:
; RA5, RA3:0 = analog inputs
; RA6, RA4 = digital inputs
;PortB pins on POR:
; RB7:0 = digital inputs

 #include p18f8720.inc ;Include file needed to reference
 ;data sheet names.

 clrf PORTA ;Clear output data latches on Ports
 clrf PORTB

 movlw 0x0F ;Configure Port A for digital I/O
 movwf ADCON1

 clrf TRISA ;Set data directon of Ports as outputs
 clrf TRISB

Loop
 incf PORTA,F ;Read PORTA, add 1 and save back.
 incf PORTB,F ;Read PORTB, add 1 and save back.
 goto Loop ;Do this repeatedly - count.
 end ;All programs must have an end directive.
DS33014J-page 124 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
5.3 EXAMPLE OF PORTB TOGGLE AND DELAY ROUTINES

Directives highlighted in this example are:

• udata, res
• equ
• code
• banksel, pagesel

Items covered in this example are:

• Program Functional Description
• Commented Code Listing
• Header Files
• Register and Bit Assignments
• Program Memory CODE Sections and Paging
• Banking
• Interrupts

5.3.1 Program Functional Description

This program continually alternates the output on the PORTB pins from 1’s to 0’s. Two
delay routines using interrupts provide the timing for the alternating output. If LEDs
were attached to PORTB, they would flash (1 = on, 0 = off).

The type of PICmicro MCU is set in MPLAB IDE, so does not need to be set in code.
However, if you wish to specify the MCU, as well as radix, in code, you may do so using
the processor and radix directives, or list command, i.e., list p=16f877a,
r=hex.

The application is written as relocatable code, i.e., you must use both the assembler
and linker to generate the executable. See PICmicro® Language Tools and
MPLAB® IDE for information on how to set up a project using assembler files and a
linker script.

The standard header file for the processor selected is included using #include.
Registers are assigned using the udata, res and equ directives. Sections of code are
created using the code statement. Data memory banking and program memory paging
is accomplished as needed using banksel and pagesel directives. Finally, the
program is finished with an end.

5.3.2 Commented Code Listing

;**************************************
;* MPASM Assembler Control Directives *
;* Example Program 1 *
;* Alternate output on Port B between *
;* 1's and 0's *
;**************************************

 #include p16f877a.inc ;Include header file

MPLAB IDE has many header files (*.inc) available for supported devices. These can
be found in the installation directory. See Section 5.3.3 “Header Files” for more on
headers.
© 2005 Microchip Technology Inc. DS33014J-page 125

Assembler/Linker/Librarian User’s Guide
 udata ;Declare storage of RAM variables
DTEMP res 1 ;Reserve 1 address location
DFLAG res 1 ;Reserve 1 address location

DFL0 equ 0x00 ;Set flag bit - 0 bit of DFLAG

Set DTEMP to be a temporary register at a location in RAM determined by the linker.
Set DFLAG to be the flag register at a location following the DTEMP register. Set DFL0
to a value to represent a bit in the DFLAG register, in this case 0. See the Additional
Comments section for more information.

rst code 0x00 ;Reset Vector
 pagesel Start ;Ensure correct page selected
 goto Start ;Jump to Start code

Place the reset vector at program memory location 0x00. When the program resets, the
program will branch to Start.

intrpt code 0x04 ;Interrupt Vector
 goto ServInt ;Jump to service interrupt

Place interrupt vector code at program memory location 0x04, since this device
automatically goes to this address for interrupts. When an interrupt occurs, the program
will branch to the ServInt routine.

isr code 0x08 ;Interrupt Service Routine
ServInt

 banksel OPTION_REG ;Select Option Reg Bank (1)
 bsf OPTION_REG, T0CS ;Stop Timer0

 banksel INTCON ;Select INTCON Bank (0)
 bcf INTCON, T0IF ;Clear overflow flag
 bcf DFLAG, DFL0 ;Clear flag bit

 retfie ;Return from interrupt

For the PIC16F877A, there is not enough memory to add a pagesel ServInt
statement to insure proper paging. Therefore, the ISR code needs to be specifically
placed on page 0. See Section 5.3.7 “Interrupts” for more on the ISR code.

;**
;* Main Program *
;**

 code ;Start Program

Begin program code. Because no address is specified, the program memory location
will be determined by the linker. See Section 5.3.5 “Program Memory CODE
Sections and Paging” for more on code.
DS33014J-page 126 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
Start
 clrf PORTB ;Clear PortB

 banksel TRISB ;Select TRISB Bank (1)
 clrf TRISB ;Set all PortB pins as outputs

 banksel INTCON ;Select INTCON Bank (0)
 bsf INTCON, GIE ;Enable Global Int's
 bsf INTCON, T0IE ;Enable Timer0 Int

First, set up PORTB pins to be all outputs using the data direction (TRISB) register.
Then set up Timer 0 and interrupts for later use.

Loop
 movlw 0xFF
 movwf PORTB ;Set PortB
 call Delay1 ;Wait

 clrf PORTB ;Clear PortB
 pagesel Delay2 ;Select Delay2 Page
 call Delay2 ;Wait

 pagesel Loop ;Select Loop Page
 goto Loop ;Repeat

Set all PORTB pins high and wait Delay 1. Then, set all PORTB pins low and wait Delay
2. Repeat until program halted. This will have the effect of “flashing” the pins of PORTB.

;**
;* Delay 1 Routine - Timer0 delay loop *
;**

Delay1

 movlw 0xF0 ;Set Timer0 value
 movwf TMR0 ;0x00-longest delay
 ;0xFF-shortest delay

 clrf DFLAG
 bsf DFLAG, DFL0 ;Set flag bit

 banksel OPTION_REG ;Select Option Reg Bank (1)
 bcf OPTION_REG, T0CS ;Start Timer0

 banksel DFLAG ;Select DFLAG Bank (0)

TLoop ;Wait for overflow: 0xFF->0x00
 btfsc DFLAG, DFL0 ;After interrupt, DFL0 = 0
 goto TLoop

 return

Use Timer 0 to create Delay 1. First, give the timer an initial value. Then, enable the
timer and wait for it to overflow from 0xFF to 0x00. This will generate an interrupt, which
will end the delay. See Section 5.3.7 “Interrupts” for more information.
© 2005 Microchip Technology Inc. DS33014J-page 127

Assembler/Linker/Librarian User’s Guide
;**
;* Delay 2 Routine - Decrement delay loop *
;**

decdly code 0x1000 ;Page 2

Place Delay2 routine at program memory location 0x1000, on page 2. (See
Section 5.3.5 “Program Memory CODE Sections and Paging” for more on code.)
This code was placed on a page other than 0 to demonstrate how a program functions
across pages.

Delay2

 movlw 0xFF ;Set DTEMP value
 movwf DTEMP ;0x00-shortest delay
 ;0xFF-longest delay

DLoop ;Use a simple countdown to
 decfsz DTEMP, F ;create delay.
 goto DLoop ;End loop when DTEMP=0

 return

Use the time it takes to decrement a register DTEMP from an initial value to 0x00 as
Delay 2. This method requires no timers or interrupts.

 end

End of the program, i.e., tells the assembler no further code needs to be assembled.

5.3.3 Header Files

A header file is included in the program flow with the #include directive.

 #include p16f877a.inc ;Include header file

Angle brackets, quotes or nothing at all may used to enclose the name of the header
file. You may specify the complete path to the included file, or let the assembler search
for it. For more on search order, see the discussion of the #include directive in
Section 4.41 “#include – Include Additional Source File”

A header file is extremely useful for specifying often-used constants, such as register
and pin names. This information can be typed in once, and then the file can be included
in any code using the processor with those registers and pins.
DS33014J-page 128 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
5.3.4 Register and Bit Assignments

You can specify your own registers and bits by using the udata, res and equ
directives, as is done in the following lines:

 udata ;Declare storage of RAM variables
DTEMP res 1 ;Reserve 1 address location
DFLAG res 1 ;Reserve 1 address location

DFL0 equ 0x00 ;Set flag bit - 0 bit of DFLAG

DTEMP and DFLAG are each assigned one address location in RAM by the linker. For
illustrative purposes, suppose the locations selected by the linker are the general
purpose registers (GPRs) 0x20 and 0x21. DFL0 is assigned the value 0x00 and will be
used as the name for pin 0 in the DFLAG register.

FIGURE 5-1: PIC16F877A REGISTER FILE MAP

The directives udata and res are used in relocatable code to define multiple registers
instead of equ. For more on these directives, see:

• Section 4.61 “udata – Begin an Object File Uninitialized Data Section”
• Section 4.56 “res – Reserve Memory”
• Section 4.27 “equ – Define an Assembler Constant”

5.3.5 Program Memory CODE Sections and Paging

The code directive is used to specify sections of relocatable code. For absolute code,
the org directive is used. See Chapter 6. “Relocatable Objects” for more on the
differences between relocatable and absolute code. For more on these directives, see:

• Section 4.9 “code – Begin an Object File Code Section”
• Section 4.50 “org – Set Program Origin”

If no code directive is used, code generation will begin at address zero. For this
example, code is used to specify code at 0x00 (Reset address), 0x04 (interrupt
address), 0x08 (Interrupt Service Routine) and 0x1000 (Delay 2 address). It does not
explicitly set the program start address, but allows the linker to place the code
appropriately. Since the linker places addressed code first, and then attempts to place
the relocatable code, based on size, the likely program memory usage is shown below.

Bank 0 Bank 1 Bank 2 Bank 3

DTEMP

DFLAG

DFL0

0x20

0x21

0x7F

0x1F

0x00
Special
Function
Registers

:

:

General
Purpose
Registers

ADCON0
© 2005 Microchip Technology Inc. DS33014J-page 129

Assembler/Linker/Librarian User’s Guide
FIGURE 5-2: PIC16F877A PROGRAM MEMORY MAP

Since the actual location of the main code (.code section) is unknown, pagesel
directives must be used to ensure that program branches to other sections are correct.

rst code 0x00 ;Reset Vector
 pagesel Start
 goto Start
 :
 code ;Start Program
 :
 pagesel Delay2 ;Select Delay2 Page
 call Delay2 ;Wait
 :
 pagesel Loop ;Select Loop Page
 goto Loop ;Repeat
 :

For more on this directive, see Section 4.52 “pagesel – Generate Page Selecting
Code (PIC10/12/16 MCUs)”

5.3.6 Banking

In this example, PORTB must be configured, causing a switch to data memory bank 1
to access the TRISB register. This change to bank 1, and subsequent return to bank 0,
is easily accomplished using the banksel directive.

 banksel TRISB ;Select TRISB Bank (1)
 clrf TRISB ;Set PortB as output

 banksel INTCON ;Select INTCON Bank (0)
 bsf INTCON, GIE ;Enable Global Int's
 bsf INTCON, T0IE ;Enable Timer0 Int

Two other routines also use banksel to access the Option register (OPTION_REG).
For more on this directive, see Section 4.7 “banksel – Generate Bank Selecting
Code”

Page 0

rst 0x0000

: :

intrpt 0x0004

: :

isr 0x0008

: :

.code (Start) 0x0010

:

Page 1
0x0800

:

Page 2
decdly (Delay2) 0x1000

: :

Page 3
0x1800

:

0x1FFF
DS33014J-page 130 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
5.3.7 Interrupts

The Delay 1 routine in this program uses the Timer 0 overflow interrupt as a timing
mechanism. Once the interrupt occurs, the program branches to the interrupt vector.
Here code is located to jump to a location where interrupt-handling code is found.

intrpt code 0x04 ;Interrupt Vector
 goto ServInt ;Jump to service interrupt

The interrupt-handling code, also known as the Interrupt Service Routine (ISR), is
generated by the programmer to handle the specific requirements of the peripheral
interrupt and the program. In this case, Timer 0 is stopped and its flag bit is cleared, so
it may be run again. Then, the program-defined flag bit is cleared. Finally, retfie
takes the program back to the instruction that was about to be executed when the
interrupt occurred.

isr code 0x08 ;Interrupt Service Routine
ServInt

 banksel OPTION_REG ;Select Option Reg Bank (1)
 bsf OPTION_REG, T0CS ;Stop Timer0

 banksel INTCON ;Select INTCON Bank (0)
 bcf INTCON, T0IF ;Clear overflow flag
 bcf DFLAG, DFL0 ;Clear flag bit

 retfie ;Return from interrupt

When the program code begins to execute again, the cleared flag bit DFL0 now causes
the delay loop TLOOP to end, thus ending Delay 1 routine.
© 2005 Microchip Technology Inc. DS33014J-page 131

Assembler/Linker/Librarian User’s Guide
5.4 EXAMPLE OF CALCULATIONS WITH VARIABLES AND CONSTANTS

Directives highlighted in this example are:

• #define, #undefine
• set
• constant, variable

Items covered in this example are:

• Program Functional Description
• Commented Code Listing
• Using Watch Windows

5.4.1 Program Functional Description

This program performs several calculations using defined constants and variables.

The application is written as relocatable code, i.e., you must use both the assembler
and linker to generate the executable.

The standard header file for the processor selected is included using #include.
Sections of code are created using the code statement.

5.4.2 Commented Code Listing

;**************************************
;* MPASM Assembler Control Directives *
;* Example Program 2 *
;* Perform calculations *
;**************************************

 #include p16f877a.inc ;Include header file

 #define Tdistance1 50 ;Define the symbol
 ;Tdistance1
 #define Tdistance2 25 ;Define the symbol
 ;Tdistance2
 #undefine Tdistance2 ;Remove Tdistance2 from
 ;the symbol table

The #define directive was used to define two substitution strings: Tdistance1 to
substitute for 50 and Tdistance2 to substitute for 25. Then #undefine was used to
remove Tdistance2 from the symbol table, i.e., Tdistance2 can no longer be used
to substitute for 25.

 udata 0x20 ;Set up distance_reg
distance_reg res 1 ;at GPR 0x20

The udata and res directives are used to assign distance_reg to register 0x20. For
more on these directives, see example 1.

rst code 0x00 ;Reset Vector
 pagesel Start
 goto Start

 code ;Start Program
Start
 clrf distance_reg ;Clear register

 movlw Tdistance1 ;Move value of Tdistance1
DS33014J-page 132 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
 movwf distance_reg ;into distance_reg

 constant distance1=10 ;Declare distance1
 ;a constant symbol

Declare a constant symbol, distance1, with a value of 10. Once a constant is
declared, its value cannot be altered.

 variable distance2 ;Declare distance2
 ;a variable symbol

Declare a variable symbol, distance2. The variable directive does not require the
symbol to be initialized when declared.

distance3 set 10 ;Define a value for
 ;the symbol distance3

Define symbol distance3 as 10.

distance2=15 ;Give distance2 an
 ;initial value
distance2=distance1+distance2 ;Add distance1
 ;to distance2

Variable assignments, increments and decrements must be placed on separate lines.

distance3 set 15 ;Change value of distance3
distance2=distance2+distance3 ;Add distance3
 ;to distance2

 movlw distance2 ;Move value of distance2
 movwf distance_reg ;into distance_reg

 goto Start ;Loop back to Start
 end

5.4.3 Using Watch Windows

Once the program begins, the value of Tdistance1 is placed into distance_reg.
This can be observed in a watch window in MPLAB IDE, where the value of
distance_reg will become 50. The symbol Tdistance1 will not be found in the
watch window symbol list, as symbols defined using the #define directive are not
available for viewing in MPLAB IDE because they are not RAM variables.

The final lines of the example program write the final value of distance2 to
distance_reg. If you had a watch window open to see distance_reg loaded with
the value of 50, you will see it change to 3A. Remember that the radix is hexadecimal,
so hex addition was used to determine the distance2 value.
© 2005 Microchip Technology Inc. DS33014J-page 133

Assembler/Linker/Librarian User’s Guide
5.5 EXAMPLE OF A 32-BIT DELAY ROUTINE

Directives highlighted in this example are:

• macro, endm
• banksel

5.5.1 Program Functional Description

A delay routine is needed in many applications. For this example, delay increments are
20 us, with the routine having a range of 40 us to 23.8 hours. (This assumes a 4 MHz
clock.)

5.5.2 Commented Code Listing

;Each loop takes 20 clocks, or 20 us per loop,
;at 4MHz or 1MIPS clock.
;Turn off in config bits WDT for long simulations

 #include p16F877A.inc

 udata 0x20
Dly0 res 1 ;Stores 4 bytes of data for the delay count
Dly1 res 1 ;Dly0 is the least significant byte
Dly2 res 1 ;while Dly3 is the most significant byte
Dly3 res 1

Dly32 MACRO DLY
 goto $+1 ;delay 2 cycles
 goto $+1 ;delay total of 4 cycles

;Take the delay value argument from the macro, precalculate
;the required 4 RAM values and load the The RAM values Dly3
;though Dly0.
 BANKSEL Dly3
 movlw (DLY-1) & H'FF'
 movwf Dly0
 movlw (DLY-1) >>D'08' & H'FF'
 movwf Dly1
 movlw (DLY-1) >>D'16' & H'FF'

;Bytes are shifted and anded by the assembler to make user
;calculations easier.
 movwf Dly2
 movlw (DLY-1) >>D'24' & H'FF'

;Call DoDly32 to run the delay loop.
 movwf Dly3
 call DoDly32
 ENDM ;End of Macro definition

RST CODE 0x00 ;Reset Vector
 pagesel TestCode
 goto TestCode

 CODE ;Code starts here
TestCode
 Dly32 D'50000' ;Max 4 billion+ (runs Dly32 Macro,
 ;1 sec in this case).
 nop ;ZERO STOPWATCH, put breakpoint here.
DS33014J-page 134 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
 goto TestCode ;Go back to top of program and
 ;run the delay again.

;Subroutine, called by the Macro Dly32 (20 Tcy per loop)
DoDly32
 movlw H'FF' ;Start with -1 in W

 addwf Dly0,F ;LSB decrement
 btfsc STATUS,C ;was the carry flag set?
 clrw ;If so, 0 is put in W

 addwf Dly1,F ;Else, we continue.
 btfsc STATUS,C
 clrw ;0 in W

 addwf Dly2,F
 btfsc STATUS,C
 clrw ;0 in W

 addwf Dly3,F
 btfsc STATUS,C
 clrw ;0 in W

 iorwf Dly0,W ;Inclusive-OR all variables
 iorwf Dly1,W ;together to see if we have reached
 iorwf Dly2,W ;0 on all of them.
 iorwf Dly3,W

 btfss STATUS,Z ;Test if result of Inclusive-OR's is 0
 goto DoDly32 ;It was NOT zero, so continue counting
 retlw 0 ;It WAS zero, so exit this subroutine.

 END
© 2005 Microchip Technology Inc. DS33014J-page 135

Assembler/Linker/Librarian User’s Guide
5.6 EXAMPLE OF SPI™ EMULATED IN FIRMWARE

Directives highlighted in this example are:

• list
• #define

• udata, res
• global

5.6.1 Program Functional Description

This program is used to emulate SPI function in firmware.

The application is written as relocatable code, i.e., you must use both the assembler
and linker to generate the executable.

The list directive is used to define the processor and set listing file formatting. The
standard header file for the processor selected is included using #include. SPI
variables are declared using #define. Program registers are assigned using the
udata and res directives. Sections of code are created using the code statement.
External code is accessed using global.

5.6.2 Commented Code Listing

;**
; Emulates SPI in firmware
; Place byte in Buffer, call SPI_Out - sends MSB first
;**

 LIST P=18F4520 ;define processor
 #include <P18F4520.INC> ;include file

 list c=132, n=0 ;132 col, no paging

;**

 #define Clk LATB,0 ; SPI clock output
 #define Dat LATB,1 ; SPI data output
 #define Bus LATB,2 ; busy indicator

;**
;Variable definitions
 udata
Buffer res 1 ; SPI transmit data
Counter res 1 ; SPI transmit bit counter
DelayCtr res 1

;**
 code
SPI_Out
 clrf Counter ; init bit counter
 bsf Counter,7

 bcf Clk ; clear clock
 bcf Dat ; clear data out
 bsf Bus ; indicate busy

DS33014J-page 136 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
Lup movf Counter,W ; get mask
 andwf Buffer,W ; test selected bit

 btfss STATUS,Z ; was result zero?
 bsf Dat ; set data

 bsf Clk ; set clock
 bcf Clk ; clear clock

 bcf Dat ; clear data

 rrncf Counter,F ; test next bit

 btfss Counter,7 ; done with byte?
 bra Lup ; no

 bcf Bus ; indicate not busy

 return

;**

 global SPI_Out, Buffer
 end
© 2005 Microchip Technology Inc. DS33014J-page 137

Assembler/Linker/Librarian User’s Guide
5.7 EXAMPLE OF HEXADECIMAL TO ASCII CONVERSION

Directives highlighted in this example are:

• udata, res
• global

5.7.1 Program Functional Description

This program converts a hexadecimal byte into two ASCII bytes.

The application is written as relocatable code, i.e., you must use both the assembler
and linker to generate the executable.

Program registers are assigned using the udata and res directives. Sections of code
are created using the code statement. External code is accessed using global.

5.7.2 Commented Code Listing

;**
; get a hex byte in W, convert to 2 ASCII bytes in ASCIIH:ASCIIL
; req 2 stack levels
;
;**
Variables udata
HexTemp res 1
ASCIIH res 1
ASCIIL res 1

;**
 code
Hex2ASC
 movf HexTemp,W
 andlw 0x0F ; get low nibble
 call DecHex
 movwf ASCIIL

 swapf HexTemp,F
 movf HexTemp,W
 andlw 0x0F ; get high nibble
 call DecHex
 movwf ASCIIH

 return

;**
DecHex
 sublw 0x09 ; 9-WREG
 btfss STATUS,C ; is nibble Dec?
 goto HexC ; no, convert hex

Dec
 movf HexTemp,W ; convert DEC nibble to ASCII
 andlw 0x0F
 addlw A'0'
 return

HexC
 movf HexTemp,W ; convert HEX nibble to ASCII
 andlw 0x0F
 addlw A'A'-0x0A
 return
DS33014J-page 138 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
;**

 global Hex2ASC, ASCIIH, ASCIIL

 END

5.8 OTHER SOURCES OF EXAMPLES

Short examples of use for each directive are listed under each directive topic. See
Chapter 4. “Directives”.

Examples of use for multiple directives are available from the following sources:

• readme.asm – Serial EEPROM Support
• Application Notes, Technical Briefs

- Website – http://www.microchip.com
• Code Examples and Templates

- MPLAB IDE installation directory
- Website – http://www.microchip.com

5.9 TIPS AND TRICKS

To reduce costs, designers need to make the most of the available program memory in
MCUs. Program memory is typically a large portion of the MCU cost. Optimizing the
code helps to avoid buying more memory than needed. Here are some ideas that can
help reduce code size. For more information, see “Tips ‘n Tricks” (DS40040).

• TIP #1: Delay Techniques
• TIP #2: Optimizing Destinations
• TIP #3: Conditional Bit Set/Clear
• TIP #4: Swap File Register with W
• TIP #5: Bit Shifting Using Carry Bit

5.9.1 TIP #1: Delay Techniques

• Use GOTO Next Instruction instead of two NOPs.
• Use CALL Rtrn as quad, 1 instruction NOP (where Rtrn is the exit label from

existing subroutine).

;***
 NOP
 NOP ;2 instructions, 2 cycles
;***
 GOTO $+1 ;1 instruction, 2 cycles
;***
 Call Rtrn ;1 instruction, 4 cycles
 :
Rtrn RETURN
;***

MCUs are commonly used to interface with the “outside world” by means of a data bus,
LED’s, buttons, latches, etc. Because the MCU runs at a fixed frequency, it will often
need delay routines to meet setup/hold times of other devices, pause for a handshake
or decrease the data rate for a shared bus.
© 2005 Microchip Technology Inc. DS33014J-page 139

Assembler/Linker/Librarian User’s Guide
Longer delays are well-suited for the DECFSZ and INCFSZ instructions where a
variable is decremented or incremented until it reaches zero when a conditional jump
is executed. For shorter delays of a few cycles, here a few ideas to decrease code size.

For a two cycle delay, it is common to use two NOP instructions which uses two program
memory locations. The same result can be achieved by using GOTO $+1. The $
represents the current program counter value in MPASM assembler. When this
instruction is encountered, the MCU will jump to the next memory location. This is what
it would have done if two NOP’s were used, but since the GOTO instruction uses two
instruction cycles to execute, a two-cycle delay was created. This created a two-cycle
delay using only one location of program memory.

To create a four cycle delay, add a label to an existing RETURN instruction in the code.
In this example, the label Rtrn was added to the RETURN of subroutine that already
existed somewhere in the code. When executing CALL Rtrn, the MCU delays two
instruction cycles to execute the CALL and two more to execute the RETURN. Instead
of using four NOP instructions to create a four cycle delay, the same result was achieved
by adding a single CALL instruction.

5.9.2 TIP #2: Optimizing Destinations

• Destination bit determines W or F for result
• Look at data movement and restructure

Example: A + B → A

MOVF A,W MOVF B,W
ADDWF B,W ADDWF A,F
MOVWF A

3 instructions 2 instructions

Careful use of the destination bits in instructions can save program memory. Here,
register A and register B are summed and the result is put into the A register. A
destination option is available for logic and arithmetic operations. In the first example,
the result of the ADDWF instruction is placed in the working register. A MOVWF instruction
is used to move the result from the working register to register A. In the second
example, the ADDWF instruction uses the destination bit to place the result into the A
register saving an instruction.

5.9.3 TIP #3: Conditional Bit Set/Clear

• To move single bit of data from REGA to REGB
• Precondition REGB bit
• Test REGA bit and fix REGB if necessary

BTFSS REGA,2 BCF REGB,5
BCF REGB,5 BTFSC REGA,2
BTFSC REGA,2 BSF REGB,5
BSF REGB,5

4 instructions 3 instructions

One technique for moving one bit from the REGA register to REGB is to perform bit
tests. In the first example, the bit in REGA is tested using a BTFSS instruction. If the bit
is clear, the BCF instruction is executed and clears the REGB bit, and if the bit is set,
the instruction is skipped.The second bit test determines if the bit is set, and if so, will
execute the BSF and set the REGB bit, otherwise the instruction is skipped. This
sequence requires four instructions.
DS33014J-page 140 © 2005 Microchip Technology Inc.

Assembler Examples, Tips and Tricks
A more efficient technique is to assume the bit in REGA is clear, and clear the REGB
bit, and test if the REGA bit is clear. If so, the assumption was correct and the BSF
instruction is skipped, otherwise the REGB bit is set. The sequence in the second
example uses three instructions because one bit test was not needed.

One important point is that the second example will create a two cycle glitch if REGB
is a port outputting a high. This is caused by the BCF and BTFSC instructions that will
be executed regardless of the bit value in REGA.

5.9.4 TIP #4: Swap File Register with W

The following macro swaps the contents of W and REG without using a second register.

SWAPWF MACRO REG
 XORWF REG,F
 XORWF REG,W
 XORWF REG,F
 ENDM

Needs: 0 TEMP registers, 3 Instructions, 3 Tcy

An efficient way of swapping the contents of a register with the working register is to
use three XORWF instructions. It requires no temporary registers and three instructions.
Here’s an example:

 W REG Instruction
10101100 01011100 XORWF REG,F
10101100 11110000 XORWF REG,W
01011100 11110000 XORWF REG,F
01011100 10101100 Result

5.9.5 TIP #5: Bit Shifting Using Carry Bit

Rotate a byte through carry without using RAM variable for loop count:

• Easily adapted to serial interface transmit routines.
• Carry bit is cleared (except last cycle) and the cycle repeats until the zero bit sets

indicating the end.

 list p=12f629
 #include p12f629.inc

buffer equ 0x20

 bsf STATUS,C ;Set ‘end of loop’ flag
 rlf buffer,F ;Place first bit into C
 bcf GPIO,Dout ;Precondition output
 btfsc STATUS,C ;Check data - 0 or 1?
 bsf GPIO,Dout
 bcf STATUS,C ;Clear data in C
 rlf buffer,F ;Place next bit into C
 movf buffer,F ;Force Z bit
 btfss STATUS,Z ;Exit?
 goto Send_Loop
© 2005 Microchip Technology Inc. DS33014J-page 141

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 142 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 6. Relocatable Objects
6.1 INTRODUCTION

MPASM assembler, used with MPLINK object linker, has the ability to generate and link
precompiled object modules. Writing source code that will be assembled to an object
module is slightly different from writing code used to generate an executable (hex) file
directly. MPASM assembler routines designed for absolute address assembly will
require minor modifications to compile correctly into relocatable object modules.

Topics covered in this chapter:

• Header Files
• Program Memory
• Low, High and Upper Operands
• RAM Allocation
• Configuration Bits and ID Locations
• Accessing Labels From Other Modules
• Paging and Banking Issues
• Generating the Object Module
• Code Example

6.2 HEADER FILES

The Microchip-supplied standard header files (e.g., p18f8720.inc) should be used
when generating object modules. These header files define the special function
registers for the target processor.

EXAMPLE 6-1: INCLUDE HEADER FILE

#include p18f8720.inc
 :

See 4.41 “#include – Include Additional Source File” for more information.
© 2005 Microchip Technology Inc. DS33014J-page 143

Assembler/Linker/Librarian User’s Guide
6.3 PROGRAM MEMORY

Program memory code must be organized into a logical code section. To do this, the
code must be preceded by a code section declaration (See 4.9 “code – Begin an
Object File Code Section”) to make it relocatable.

If more than one code section is defined in a source file, each section must have a
unique name. If the name is not specified, it will be given the default name .code.

Each program memory section must be contiguous within a single source file. A section
may not be broken into pieces within a single source file.

The physical address of the code can be fixed by supplying the optional address
parameter of the code directive. Situations where this might be necessary are:

• Specifying reset and interrupt vectors
• Ensuring that a code segment does not overlap page boundaries

EXAMPLE 6-2: RELOCATABLE CODE

Reset code 0x0lFF ;Fixed address
 goto Start
Main code ;Address determined by the linker
 clrw
 option

6.4 LOW, HIGH AND UPPER OPERANDS

Low, high and upper operands are used to return one byte of a multi-byte label value.
If low is used, only bits 0 through 7 of the expression will be used. If high is used, only
bits 8 through 15 of the expression will be used. If upper is used, only bits 16 through
21 of the expression will be used.

Operand precedence information may be found in 3.5 “Arithmetic Operators and
Precedence”.

Absolute Code Equivalent Relocatable Code

Start clrw
 option

 code ;Address determined
 ;by the linker.
Start clrw
 option

Prog1 org 0x0100
 movlw 0x0A
 movwf var1

Prog1 code 0x0100 ;Start at 0x0100
 movlw 0x0A
 movwf var1

Operand Definition

low Return low byte of address.

high Return high byte of address.

upper Return upper byte of address.

scnsz_low Return low byte of section size.

scnsz_high Return high byte of section size.

scnsz_upper Return upper byte of section size.

scnend_low Return low byte of section end address.

scnend_high Return high byte of section end address.

scnend_upper Return upper byte of section end address.

scnstart_low Return low byte of section start address.

scnstart_high Return high byte of section start address.

scnstart_upper Return upper byte of section start address.
DS33014J-page 144 © 2005 Microchip Technology Inc.

Relocatable Objects
There are some restrictions involving these operands with relocatable symbols. For
example, the low, high and upper operands must be of the form:

[low|high|upper] (relocatable_symbol + constant_offset)

where:

• relocatable_symbol is any label that defines a program or data memory
address

• constant_offset is an expression that is resolvable at assembly time to a value
between -32768 and 32767

Either relocatable_symbol or constant_offset may be omitted.

Operands of the form:

relocatable_symbol - relocatable_symbol

will be reduced to a constant value if both symbols are defined in the same code or data
section.

In addition to section operands, there are section pseudo-instructions.

These operands and instructions only have meaning when an object file is generated;
they cannot be used when generating absolute code.

EXAMPLE 6-3: GENERAL OPERAND USE

The general operands, low, high and upper, may be used to access data in tables.
The following code example was taken the p18demo.asm file provided with
PICDEM™ 2 Plus demo board. The excerpt shows how “Microchip” is read from the
table and displayed on the demo board LCD.

 #include p18f452.inc
 :
PROG1 CODE

stan_table ;table for standard code
 ; "XXXXXXXXXXXXXXXX"
 ; ptr:
 data " Voltmeter " ;0
 data " Buzzer " ;16
 data " Temperature " ;32
 data " Clock " ;48
 data "RA4=Next RB0=Now" ;64
 data " Microchip " ;80
 data " PICDEM 2 PLUS " ;96
 data "RA4=Set RB0=Menu" ;112
 data "RA4= --> RBO= ++" ;128
 data " RB0 = Exit " ;144
 data "Volts = " ;160
 data "Prd.=128 DC=128 " ;176
 :

Pseudo-Instruction Definition

scnend_lfsr scnend_lfsr n,s, where n is 0, 1, or 2 (as with the LFSR
instruction) and s is a string which is taken to be the name of a
section. This instruction loads LFSR with the end address of the
section.

scnstart_lfsr scnstart_lfsr n,s, where n is 0, 1, or 2 (as with the LFSR
instruction) and s is a string which is taken to be the name of a
section. This instruction loads LFSR with the start address of the
section.
© 2005 Microchip Technology Inc. DS33014J-page 145

Assembler/Linker/Librarian User’s Guide
;**************** STANDARD CODE MENU SELECTION *******************

 movlw .80 ;send "Microchip" to LCD
 movwf ptr_pos
 call stan_char_1
 :
;----Standard code, Place characters on line-1----
stan_char_1
 call LCDLine_1 ;move cursor to line 1
 movlw .16 ;1-full line of LCD
 movwf ptr_count
 movlw UPPER stan_table ;use operands to load
 movwf TBLPTRU ;table pointer values
 movlw HIGH stan_table
 movwf TBLPTRH
 movlw LOW stan_table
 movwf TBLPTRL
 movf ptr_pos,W
 addwf TBLPTRL,F
 clrf WREG
 addwfc TBLPTRH,F
 addwfc TBLPTRU,F

stan_next_char_1
 tblrd *+
 movff TABLAT,temp_wr
 call d_write ;send character to LCD

 decfsz ptr_count,F ;move pointer to next char
 bra stan_next_char_1

 movlw "\n" ;move data into TXREG
 movwf TXREG ;next line
 btfss TXSTA,TRMT ;wait for data TX
 goto $-2
 movlw "\r" ;move data into TXREG
 movwf TXREG ;carriage return
 btfss TXSTA,TRMT ;wait for data TX
 goto $-2

 return
 :
DS33014J-page 146 © 2005 Microchip Technology Inc.

Relocatable Objects
6.5 RAM ALLOCATION

RAM space must be allocated in a data section. Five types of data sections are
available:

• udata – Uninitialized data. This is the most common type of data section.
Locations reserved in this section are not initialized and can be accessed only by
the labels defined in this section or by indirect accesses. See
4.61 “udata – Begin an Object File Uninitialized Data Section”.

• udata_acs – Uninitialized access data. This data section is used for variables that
will be placed in access RAM of PIC18 devices. Access RAM is used as quick
data access for specified instructions. See 4.62 “udata_acs – Begin an Object
File Access Uninitialized Data Section (PIC18 MCUs)”.

• udata_ovr – Uninitialized overlaid data. This data section is used for variables that
can be declared at the same address as other variables in the same module or in
other linked modules. A typical use of this section is for temporary variables. See
4.63 “udata_ovr – Begin an Object File Overlaid Uninitialized Data
Section”.

• udata_shr – Uninitialized shared data. This data section is used for variables that
will be placed in RAM of PIC12/16 devices that is unbanked or shared across all
banks. See 4.64 “udata_shr – Begin an Object File Shared Uninitialized
Data Section (PIC12/16 MCUs)”.

• idata – Initialized data. The linker will generate a lookup table that can be used to
initialize the variables in this section to the specified values. When linked with
MPLAB C17 or C18 code, these locations will be initialized during execution of the
startup code. The locations reserved by this section can be accessed only by the
labels defined in this section or by indirect accesses. See 4.35 “idata – Begin
an Object File Initialized Data Section”.

The following example shows how a data declaration might be created.

EXAMPLE 6-4: RAM ALLOCATION

Absolute Code

Use cblock to define variable register locations (see 4.8 “cblock – Define a Block
of Constants”). Variable values will need to be specified in code.

 cblock 0x20
 HistoryVector ;Must be initialized to 0
 InputGain, OutputGain ;Control loop gains
 Templ, Temp2, Temp3 ;Used for internal calculations
 endc

Equivalent Relocatable Code

Use data declarations to define register locations and initialize.

 idata
 HistoryVector db 0 ;Initialized to 0
 udata
 InputGain res 1 ;Control loop gains
 OutputGain res 1
 udata_ovr
 Templ res 1 ;Used for internal calculations
 Temp2 res 1
 Temp3 res 1

Note: The ability to use access, overlaid or shared data varies by device. Consult
your device data sheet for more information.
© 2005 Microchip Technology Inc. DS33014J-page 147

Assembler/Linker/Librarian User’s Guide
If necessary, the location of the section may be fixed in memory by supplying the
optional address parameter. If more than one of each section type is specified, each
section must have a unique name. If a name is not provided, the default section names
are: .idata, .udata, .udata_acs, .udata_shr and .udata_ovr.

When defining initialized data in an idata section, the directives db, dw and data can
be used. db will define successive bytes of data memory. dw and data will define
successive words of data memory in low-byte/high-byte order. The following example
shows how data will be initialized.

EXAMPLE 6-5: RELOCATABLE CODE LISTING

 00001 IDATA
0000 01 02 03 00002 Bytes DB 1,2,3
0003 34 12 78 56 00003 Words DW 0x1234,0x5678
0007 41 42 43 00 00004 String DB "ABC", 0

6.6 CONFIGURATION BITS AND ID LOCATIONS

Configuration bits and ID locations can still be defined in a relocatable object using the
following directives:

• Section 4.11 “__config – Set Processor Configuration Bits”
• Section 4.12 “config – Set Processor Configuration Bits (PIC18 MCUs)”
• Section 4.37 “__idlocs – Set Processor ID Locations”

Only one linked module can specify these directives. They should be used prior to
declaring any code sections. After using these directives, the current section is
undefined.

6.7 ACCESSING LABELS FROM OTHER MODULES

Labels that are defined in one module for use in other modules must be exported using
the global directive (see 4.34 “global – Export a Label”). Modules that use these
labels must use the extern directive (see 4.32 “extern – Declare an Externally
Defined Label”) to declare the existence of these labels. An example of using the
global and extern directives is shown below.

EXAMPLE 6-6: RELOCATABLE CODE, DEFINING MODULE

 udata
 InputGain res 1
 OutputGain res 1
 global InputGain, OutputGain
 code
Filter
 global Filter
 : ; Filter code

EXAMPLE 6-7: RELOCATABLE CODE, REFERENCING MODULE

 extern InputGain, OutputGain, Filter
 udata
 Reading res 1

 code
 :
 movlw GAIN1
 movwf InputGain
 movlw GAIN2
 movwf OutputGain
DS33014J-page 148 © 2005 Microchip Technology Inc.

Relocatable Objects
 movf Reading,W
 call Filter

6.8 PAGING AND BANKING ISSUES

In many cases, RAM allocation will span multiple banks, and executable code will span
multiple pages. In these cases, it is necessary to perform proper bank and page set-up
to properly access the labels. However, since the absolute addresses of these variable
and address labels may not be known at assembly time, it is not always possible to
place the proper code in the source file. For these situations two directives, banksel
(4.7 “banksel – Generate Bank Selecting Code”) and pagesel (4.52 “pagesel –
Generate Page Selecting Code (PIC10/12/16 MCUs)”), have been added. These
directives instruct the linker to generate the correct bank or page selecting code for a
specified label. An example of how code should be converted is shown below.

EXAMPLE 6-8: BANKSEL AND PAGESEL

Hard-Coded Banking and Paging

Use indirect addressing (FSR) and the STATUS register for banking and paging,
respectively.

 #include p12f509.inc
Varl equ 0x10 ;Declare variables
Var2 equ 0x30
...
 movlw InitialValue
 bcf FSR, 5 ;Data memory Var1 bank (0)
 movwf Varl
 bsf FSR, 5 ;Data memory Var2 bank (1)
 movwf Var2
 bsf STATUS, PA0 ;Program memory page 1
 call Subroutine
...
Subroutine clrw ;On Page 1
...
 retlw 0

BANKSEL for Banking and PAGESEL for Paging

Use banksel and pagesel for banking and paging, respectively.

 #include p12f509.inc
 extern Var1, Var2 ;Declare variables

code
 movlw InitialValue
 banksel Varl ;Select data memory Var1 bank
 movwf Varl
 banksel Var2 ;Select data memory Var2 bank
 movwf Var2
 pagesel Subroutine ;Select program memory page
 call Subroutine
...
Subroutine clrw ;Page unknown at assembly time
...
 retlw 0
© 2005 Microchip Technology Inc. DS33014J-page 149

Assembler/Linker/Librarian User’s Guide
6.9 GENERATING THE OBJECT MODULE

Once the code conversion is complete, the object module is generated automatically
in MPLAB IDE or by requesting an object file on the command line or in the shell
interface. When using MPASM assembler for Windows, check the checkbox labeled
"Object File". When using the DOS command line interface, specify the /o option and
toggle "Assemble to Object File" to "Yes". The output file will have a .o extension.

6.10 CODE EXAMPLE

Since an eight-by-eight bit multiply is a useful, generic routine, it would be handy to
break this off into a separate object file that can be linked in when required. The
absolute code file can be broken into two relocatable code files: a calling file
representing an application and a generic routine that could be incorporated in a library.

This code was adapted from application note AN617. Please see the Microchip website
for a downloadable PDF of this application note.

EXAMPLE 6-9: ABSOLUTE CODE

; Input: fixed point arguments in AARGB0 and BARGB0
; Output: product AARGxBARG in AARGB0:AARGB1
; Other comments truncated. See AN617.
;**
 #include p16f877a.inc ;Use any PIC16 device you like

LOOPCOUNT EQU 0x20 ;7 loops needed to complete routine
AARGB0 EQU 0x21 ;MSB of result out,
AARGB1 EQU 0x22 ;operand A in (8 bits)
BARGB0 EQU 0x23 ;LSB of result out,
 ;operand B in (8 bits)

TestCode
 clrf AARGB1 ;Clear partial product before testing
 movlw D'11'
 movwf AARGB0
 movlw D'30'
 movwf BARGB0
 call UMUL0808L ;After loading AARGB0 and BARGB0,
 ;call routine
 goto $;Result now in AARGB0:AARGB1,
 ;where (B0 is MSB)
 END

UMUL0808L
 movlw 0x08
 movwf LOOPCOUNT
 movf AARGB0,W
LOOPUM0808A
 rrf BARGB0, F
 btfsc STATUS,C
 goto LUM0808NAP
 decfsz LOOPCOUNT, F
 goto LOOPUM0808A
 clrf AARGB0
 retlw 0x00
LUM0808NAP
 bcf STATUS,C
 goto LUM0808NA
DS33014J-page 150 © 2005 Microchip Technology Inc.

Relocatable Objects
LOOPUM0808
 rrf BARGB0, F
 btfsc STATUS,C
 addwf AARGB0, F
LUM0808NA
 rrf AARGB0, F
 rrf AARGB1, F
 decfsz LOOPCOUNT, F
 goto LOOPUM0808
 retlw 0

 END

EXAMPLE 6-10: RELOCATABLE CODE, CALLING FILE

; Input: fixed point arguments in AARGB0 and BARGB0
; Output: product AARGxBARG in AARGB0:AARGB1
; Other comments truncated. See AN617.
;**
 #include p16f877a.inc ;Use any PIC16 device you like

 EXTERN UMUL0808L, AARGB0, AARGB1, BARGB0

Reset CODE 0x0
 pagesel TestCode
 goto TestCode

 CODE
TestCode
 banksel AARGB1
 clrf AARGB1 ;Clear partial product before testing
 movlw D'11' ;Load in 2 test values
 movwf AARGB0
 movlw D'30'
 movwf BARGB0
 pagesel UMUL0808L
 call UMUL0808L ;After loading AARGB0 and BARGB0,
 ;call routine
 goto $;Result now in AARGB0:AARGB1,
 ;where (AARGB0 is MSB)
 END

EXAMPLE 6-11: RELOCATABLE CODE, LIBRARY ROUTINE

; Input: fixed point arguments in AARGB0 and BARGB0
; Output: product AARGxBARG in AARGB0:AARGB1
; Other comments truncated. See AN617.
;**
 #include p16f877a.inc ;Use any PIC16 device you like

 GLOBAL UMUL0808L, AARGB0, AARGB1, BARGB0

 UDATA
LOOPCOUNT RES 1 ;7 loops needed to complete routine
AARGB0 RES 1 ;MSB of result out,
AARGB1 RES 1 ;operand A in (8 bits)
BARGB0 RES 1 ;LSB of result out,
 ;operand B in (8 bits)
© 2005 Microchip Technology Inc. DS33014J-page 151

Assembler/Linker/Librarian User’s Guide
 CODE
UMUL0808L
 movlw 0x08
 movwf LOOPCOUNT
 movf AARGB0,W
LOOPUM0808A
 rrf BARGB0, F
 btfsc STATUS,C
 goto LUM0808NAP
 decfsz LOOPCOUNT, F
 goto LOOPUM0808A
 clrf AARGB0
 retlw 0x00
LUM0808NAP
 bcf STATUS,C
 goto LUM0808NA
LOOPUM0808
 rrf BARGB0, F
 btfsc STATUS,C
 addwf AARGB0, F
LUM0808NA
 rrf AARGB0, F
 rrf AARGB1, F
 decfsz LOOPCOUNT, F
 goto LOOPUM0808
 retlw 0

 END
DS33014J-page 152 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 7. Macro Language
7.1 INTRODUCTION

Macros are user defined sets of instructions and directives that will be evaluated in-line
with the assembler source code whenever the macro is invoked.

Macros consist of sequences of assembler instructions and directives. They can be
written to accept arguments, making them quite flexible. Their advantages are:

• Higher levels of abstraction, improving readability and reliability.
• Consistent solutions to frequently performed functions.
• Simplified changes.
• Improved testability.

Applications might include creating complex tables, frequently used code, and complex
operations.

Topics covered in this chapter:

• Macro Syntax
• Macro Directives Defined
• Macro Definition
• Macro Invocation
• Macro Code Examples

7.2 MACRO SYNTAX

MPASM assembler macros are defined according to the following syntax:

label macro [arg1,arg2 ..., argn]
 :
 :
 endm

where label is a valid assembler label that will be the macro name and arg is any
number of optional arguments supplied to the macro (that will fit on the source line).
The values assigned to these arguments at the time the macro is invoked will be
substituted wherever the argument name occurs in the body of the macro.

The body of a macro may be comprised of MPASM assembler directives, PICmicro
MCU assembly instructions, or MPASM assembler macro directives (local for
example). The assembler continues to process the body of the macro until an exitm
or endm directive is encountered.

Note: Macros must be defined before they are used, i.e., forward references to
macros are not permitted.
© 2005 Microchip Technology Inc. DS33014J-page 153

Assembler/Linker/Librarian User’s Guide
7.3 MACRO DIRECTIVES DEFINED

There are directives that are unique to macro definitions. They cannot be used out of
the macro context.

• 4.44 “macro – Declare Macro Definition”
• 4.30 “exitm – Exit from a Macro”
• 4.25 “endm – End a Macro Definition”
• 4.31 “expand – Expand Macro Listing”
• 4.48 “noexpand – Turn off Macro Expansion”
• 4.43 “local – Declare Local Macro Variable”

When writing macros, you can use any of these directives PLUS any other directives
supported by the assembler.

7.4 MACRO DEFINITION

String replacement and expression evaluation may appear within the body of a macro.

Arguments may be used anywhere within the body of the macro, except as part of
normal expression.

The exitm directive provides an alternate method for terminating a macro expansion.
During a macro expansion, this directive causes expansion of the current macro to stop
and all code between the exitm and the endm directives for this macro to be ignored.
If macros are nested, exitm causes code generation to return to the previous level of
macro expansion.

7.5 MACRO INVOCATION

Once the macro has been defined, it can be invoked at any point within the source
module by using a macro call, as described below:

macro_name [arg, ..., arg]

where macro_name is the name of a previously defined macro and arguments are
supplied as required.

The macro call itself will not occupy any locations in memory. However, the macro
expansion will begin at the current memory location. Commas may be used to reserve
an argument position. In this case, the argument will be an empty string. The argument
list is terminated by white space or a semicolon.

Note: The previous syntax of the “dot” format for macro specific directives is no
longer supported.

Command Description

arg Substitute the argument text supplied as part of the macro invocation.

#v(expr) Return the integer value of expr. Typically used to create unique variable
names with common prefixes or suffixes. Cannot be used in conditional
assembly directives (e.g. ifdef, while).
DS33014J-page 154 © 2005 Microchip Technology Inc.

Macro Language
EXAMPLE 7-1: MACRO CODE GENERATION

The following macro:

define_table macro
 local a = 0
 while a < 3
 entry#v(a) dw 0
 a += 1
 endw
 endm

When invoked, would generate:

entry0 dw 0
entry1 dw 0
entry2 dw 0
entry3 dw 0

7.6 MACRO CODE EXAMPLES

The following are examples of macros:

• Literal to RAM Conversion
• Constant Compare

7.6.1 Literal to RAM Conversion

This code converts any literal of 32 bits to 4 separate RAM data values. In this example,
the literal 0x12345678 is put in the desired 8-bit registers as 0x12, 0x34, 0x56 and
0x78. Any literal can be “unpacked” this way using this macro.

 #include p16F877A.inc

 udata 0x20
Out0 res 1 ; LSB
Out1 res 1 ; :
Out2 res 1 ; :
Out3 res 1 ; MSB

Unpack32 MACRO Var, Address ;Var = 32 bit literal to be unpacked
 BANKSEL Address ;Address specifies the LSB start
 movlw Address ;Use FSR and INDF for indirect
 movwf FSR ;access to desired address

 movlw Var & H'FF' ;Mask to get LSB
 movwf INDF ;Put in first location
 movlw Var >>D'08' & H'FF';Mask to get next byte of literal
 incf FSR,F ;Point to next byte
 movwf INDF ;Write data to next byte
 movlw Var >>D'16' & H'FF';Mask to get next byte of literal
 incf FSR,F ;Point to next byte
 movwf INDF ;Write data to next byte
 movlw Var >>D'24' & H'FF';Mask to get last byte of literal
 incf FSR,F ;Point to last byte
 movwf INDF ;Write data to last byte
 ENDM ;End of the Macro Definition

 ORG 0
Start ;TEST CODE for Unpack32 MACRO
 Unpack32 0x12345678,Out0 ;Put Unpack Macro here
 goto $;Do nothing (loop forever)
 END
© 2005 Microchip Technology Inc. DS33014J-page 155

Assembler/Linker/Librarian User’s Guide
7.6.2 Constant Compare

As another example, if the following macro were written:

 #include "pic16f877a.inc"
;
; compare file to constant and jump if file
; >= constant.
;
cfl_jge macro file, con, jump_to
 movlw con & 0xff
 subwf file, w
 btfsc status, carry
 goto jump_to
 endm

and invoked by:

cfl_jge switch_val, max_switch, switch_on

it would produce:

movlw max_switch & 0xff
subwf switch_val, w
btfsc status, carry
goto switch_on
DS33014J-page 156 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 8. Errors, Warnings, Messages, and Limitations
8.1 INTRODUCTION

Error messages, warning messages and general messages produced by the
MPASM assembler are listed and detailed here. These messages always appear in the
listing file directly above each line in which the error occurred. Limitations of the
assembler tool are also listed.

The messages are stored in the error file (.err) if no MPASM assembler options are
specified. If the /e- option is used (turns error file off), then the messages will appear
on the screen. If the /q (quiet mode) option is used with the /e-, then the messages
will not display on the screen or in an error file. The messages will still appear in the
listing file.

Topics covered in this chapter:

• Assembler Errors
• Assembler Warnings
• Assembler Messages
• Assembler Limitations

8.2 ASSEMBLER ERRORS

MPASM assembler errors are listed numerically below:

101 ERROR:

User error, invoked with the error directive.

102 Out of memory

Not enough memory for macros, #define’s or internal processing.

103 Symbol table full

No more memory available for the symbol table.

104 Temp file creation error

Could not create a temporary file. Check the available disk space.

105 Cannot open file

Could not open a file. If it is a source file, the file may not exist. If it is an output file, the
old version may be write protected.

To check for write-protect, right-click on the file named by MPLAB IDE in Windows.
Choose “Properties” and see if “read-only” is checked. If it is, it cannot be modified by
MPLAB IDE and will generate this error message. This often happens when you save
your project to a CD-R or similar write-once media as a backup, and then copy the data
to your computer. Copying to a CD marks all files as read-only (they cannot be changed
on a CD-R), and when you copy the files, the attributes move with them making them
© 2005 Microchip Technology Inc. DS33014J-page 157

Assembler/Linker/Librarian User’s Guide
all read-only on your hard drive. A good way to prevent this is to archive all of the files
in one file, such as a *.ZIP, and then restore them from CD. The archive will preserve
the original file attributes.

106 String substitution too complex

A string substitution was attempted that was too complex. Check for nesting of
#define’s.

107 Illegal digit

An illegal digit in a number. Valid digits are 0-1 for binary, 0-7 for octal, 0-9 for decimal,
and 0-9, a-f, and A-F for hexadecimal.

108 Illegal character

An illegal character in a label. Valid characters for labels are alphabetic (a..f, A..F),
numeric (0-9), the underscore (_), and the question mark (?). Labels may not begin with
a numeric.

109 Unmatched (

An open parenthesis did not have a matching close parenthesis. For example,
DATA (1+2.

110 Unmatched)

An close parenthesis did not have a matching open parenthesis. For example,
DATA 1+2).

111 Missing symbol

An equ or set directive did not have a symbol to which to assign the value.

112 Missing operator

An arithmetic operator was missing from an expression. For example, DATA 1 2.

113 Symbol not previously defined

A symbol was referenced that has not yet been defined. Check the spelling and
location of the declaration of any symbols used in your code. Only addresses may be
used as forward references. Constants and variables must be declared before they are
used.

This sometimes happens when #include files are used in your project. Since the text
from an include file is inserted at the location of the #include statement, and you may
have labels used before that point, you can get this error. Also, the error may occur
due to a typing error, spelling mistake or case change in your label. MyLabel is not the
same as Mylabel unless case sensitivity is turned off (it is on by default). Additionally,
goto MyLabel will never locate the code at Mylabl or Mylable. Check for these
sorts of mistakes first. As a general rule, put your include files at the top of each file. If
this seems to cluttered, you may include files within other include files.

114 Divide by zero

Division by zero encountered during an expression evaluation.

115 Duplicate label

A label was declared as a constant (e.g., with the equ or cblock directive) in more
than one location.
DS33014J-page 158 © 2005 Microchip Technology Inc.

Errors, Warnings, Messages, and Limitations
116 Address label duplicated or different in second pass

The same label was used in two locations. Alternately, the label was used only once
but evaluated to a different location on the second pass. This often happens when
users try to write page-bit setting macros that generate different numbers of instructions
based on the destination.

117 Address wrapped around 0

For PIC12/16 devces, the location counter can only advance to 0xFFFF. After that, it
wraps back to 0. Error 117 is followed by error 118.

118 Overwriting previous address contents

Code was previously generated for this address.

119 Code too fragmented

The code is broken into too many pieces. This error is very rare, and will only occur in
source code that references addresses above 32K (including configuration bits).

120 Call or jump not allowed at this address

A call or jump cannot be made to this address. For example, CALL destinations on the
PIC16C5x family must be in the lower half of the page.

121 Illegal label

Labels are not allowed on certain directive lines. Simply put the label on its own line,
above the directive. Also, high, low, page, and bank are not allowed as labels.

122 Illegal opcode

Token is not a valid opcode.

123 Illegal directive

Directive is not allowed for the selected processor; for example, the __idlocs
directive on devices with ID locations.

124 Illegal argument

An illegal directive argument; for example, list foobar.

125 Illegal condition

A bad conditional assembly. For example, an unmatched endif.

126 Argument out of range

Opcode or directive argument out of the valid range; for example, TRIS 10.

127 Too many arguments

Too many arguments specified for a macro call.

128 Missing argument(s)

Not enough arguments for a macro call or an opcode.

129 Expected

Expected a certain type of argument. The expected list will be provided.
© 2005 Microchip Technology Inc. DS33014J-page 159

Assembler/Linker/Librarian User’s Guide
130 Processor type previously defined

A different family of processor is being selected.

131 Processor type is undefined

Code is being generated before the processor has been defined. Note that until the
processor is defined, the opcode set is not known.

132 Unknown processor

The selected processor is not a valid processor.

133 Hex file format INHX32 required

An address above 32K was specified.

134 Illegal hex file format

An illegal hex file format was specified in the list directive.

135 Macro name missing

A macro was defined without a name.

136 Duplicate macro name

A macro name was duplicated.

137 Macros nested too deep

The maximum macro nesting level was exceeded.

138 Include files nested too deep

The maximum include file nesting level was exceeded.

139 Maximum of 100 lines inside WHILE-ENDW

A while-endw can contain at most 100 lines.

140 WHILE must terminate within 256 iterations

A while-endw loop must terminate within 256 iterations. This is to prevent infinite
assembly.

141 WHILEs nested too deep

The maximum while-endw nesting level was exceeded.

142 IFs nested too deep

The maximum if nesting level was exceeded.

143 Illegal nesting

Macros, if's and while's must be completely nested; they cannot overlap. If you have
an if within a while loop, the endif must come before the endw.

144 Unmatched ENDC

endc found without a cblock.

145 Unmatched ENDM

endm found without a macro definition.
DS33014J-page 160 © 2005 Microchip Technology Inc.

Errors, Warnings, Messages, and Limitations
146 Unmatched EXITM

exitm found without a macro definition.

147 Directive/operation only allowed when generating an object file

The instruction/operand shown only has meaning when a linkable object file is
generated. It cannot be used when generating absolute code.

148 Expanded source line exceeded 200 characters

The maximum length of a source line, after #define and macro parameter
substitution, is 200 characters. Note that #define substitution does not include
comments, but macro parameter substitution does.

149 Directive only allowed when generating an object file

Certain directives, such as global and extern, only have meaning when a linkable
object file is generated. They cannot be used when generating absolute code.

150 Labels must be defined in a code or data section when making an
object file

When generating a linkable object file, all data and code address labels must be
defined inside a data or code section. Symbols defined by the equ and set directives
can be defined outside of a section.

151 Operand contains unresolvable labels or is too complex

When generating an object file, operands must be of the form [high|low]([relocatable
address label]+[offset]).

152 Executable code and data must be defined in an appropriate section

When generating a linkable object file, all executable code and data declarations must
be placed within appropriate sections.

153 Page or Bank bits cannot be evaluated for the operand

The operand of a pagesel, banksel or bankisel directive must be a relocatable
address label or a constant.

154 Each object file section must be contiguous

Object file sections, except udata_ovr sections, cannot be stopped and restarted
within a single source file. To resolve this problem, either name each section with its
own name or move the code and data declarations such that each section is
contiguous. This error will also be generated if two sections of different types are given
the same name.

155 All overlaid sections of the same name must have the same starting
address

If multiple udata_ovr sections with the same name are declared, they must all have
the same starting address.

156 Operand must be an address label

When generating object files, only address labels in code or data sections may be
declared global. Variables declared by the set or equ directives may not be exported.
© 2005 Microchip Technology Inc. DS33014J-page 161

Assembler/Linker/Librarian User’s Guide
157 ORG at odd address

For PIC18 devices, you cannot place org at an odd address, only even. Consult your
device data sheet.

158 Cannot use RES directive with odd number of bytes

For PIC18 devices, you cannot use res to specify an odd number of bytes, only even.
Consult your device data sheet.

159 Cannot use FILL directive with odd number of bytes

For PIC18 devices, you cannot use fill to fill with data an odd number of bytes, only
even. Consult your device data sheet.

160 CODE_PACK directive not available for this part;substituting CODE

The code_pack directive can only be used with byte-addressable ROM.

161 Non-negative value required for this context.

Some contexts require non-negative values.

162 Expected a section name

Some operators and pseudo-operators take section names as operands. The lexical
form of a section name is that of an identifier, optionally prefixed with a ‘.’.

163 __CONFIG directives must be contiguous

Do not place other code between __config directive declarations.

164 __IDLOC directives must be contiguous

Do not place other code between __idloc directive declarations.

165 extended mode not available for this device

This PIC18 device does not support extended mode.

166 left bracket missing from offset operand

The left bracket is missing from an offset, i.e., [0x55.

167 right bracket missing from offset operand

The right bracket is missing from an offset, i.e., 0x55].

168 square brackets required around offset operand

Square brackets are required around an offset, i.e., [0x55]

169 access bit cannot be specified with indexed mode

When using indexed mode, the access bit cannot be specified.

170 expression within brackets must be constant

The expression specified within brackets is not a constant value.

171 address specified is not in access ram range of [0x60, 0xFF]

When making use of Access RAM, addressing must occur within the specified Access
Bank range.
DS33014J-page 162 © 2005 Microchip Technology Inc.

Errors, Warnings, Messages, and Limitations
172 PCL, TOSL, TOSH, or TOSU cannot be destinatin of MOVFF or
MOVSF

These registers cannot be written to with movff or movsf commands.

173 source file path exceeds 62 characters

MPASM assembler has a 62-character limit on source file path names, i.e., the length
of the path plus the name of the file. See Section 8.5 “Assembler Limitations” for
more information.

174 __CONFIG directives must be listed in ascending order

List config directive configuration registers in ascending order, i.e.,

__CONFIG _CONFIG0, _CP_OFF_0
__CONFIG _CONFIG1, _OSCS_OFF_1 & _RCIO_OSC_1
__CONFIG _CONFIG2, _BOR_ON_2 & _BORV_25_2
 :

175 __IDLOCS directives must be listed in ascending order

List __idlocs directive ID registers in ascending order, i.e.,

 __idlocs _IDLOC0, 0x1
 __idlocs _IDLOC1, 0x2
 __idlocs _IDLOC2, 0x3
 :

176 CONFIG Directive Error:

An error was found in the config directive syntax.

177 __CONFIG directives cannot be used with CONFIG directives

Do not mix __config directives and config directives when assigning configuration
bits in your code.

178 __CONFIG Directive Error:

An error was found in the __config directive syntax.

UNKNOWN ERROR

An internal application error has occurred. (### is the value of the last defined error
plus 1.)

Contact your Microchip Field Application Engineer (FAE) or Microchip support if you
cannot debug this error.

8.3 ASSEMBLER WARNINGS

MPASM assembler warnings are listed numerically below:

201 Symbol not previously defined.

The symbol being #undefine’d was not previously defined.

202 Argument out of range. Least significant bits used.

Argument did not fit in the allocated space. For example, literals must be 8 bits.

203 Found opcode in column 1.

An opcode was found in column one, which is reserved for labels.
© 2005 Microchip Technology Inc. DS33014J-page 163

Assembler/Linker/Librarian User’s Guide
204 Found pseudo-op in column 1.

A pseudo-op was found in column one, which is reserved for labels.

205 Found directive in column 1.

A directive was found in column one, which is reserved for labels.

206 Found call to macro in column 1.

A macro call was found in column one, which is reserved for labels.

207 Found label after column 1.

A label was found after column one, which is often due to a misspelled opcode.

208 Label truncated at 32 characters.

Maximum label length is 32 characters.

209 Missing quote.

A text string or character was missing a quote. For example, DATA 'a.

210 Extra “,”

An extra comma was found at the end of the line.

211 Extraneous arguments on the line.

Extra arguments were found on the line.

212 Expected (ENDIF)

Expected an endif statement, i.e., an if statement was used without an endif.

213 The EXTERN directive should only be used when making a .o file.

The extern directive only has meaning if an object file is being created. This warning
has been superseded by Error 149.

214 Unmatched (

An unmatched parenthesis was found. The warning is used if the parenthesis is not
used for indicating order of evaluation.

215 Processor superseded by command line. Verify processor symbol.

The processor was specified on the command line as well as in the source file. The
command line has precedence.

If you are using MPLAB IDE with the assembly, set the device to match the source file
from Configure>Select Device.

216 Radix superseded by command line.

The radix was specified on the command line as well as in the source file. The
command line has precedence.

217 Hex file format specified on command line.

The hex file format was specified on the command line as well as in the source file. The
command line has precedence.
DS33014J-page 164 © 2005 Microchip Technology Inc.

Errors, Warnings, Messages, and Limitations
218 Expected DEC, OCT, HEX. Will use HEX.

Bad radix specification.

219 Invalid RAM location specified.

If the __maxram and __badram directives are used, this warning flags use of any RAM
locations declared as invalid by these directives. Note that the provided header files
include __maxram and __badram for each processor.

220 Address exceeds maximum range for this processor.

A ROM location was specified that exceeds the processor's memory size.

221 Invalid message number.

The message number specified for displaying or hiding is not a valid message number.

222 Error messages cannot be disabled.

Error messages cannot be disabled with the errorlevel command.

223 Redefining processor

The selected processor is being reselected by the list or processor directive.

224 Use of this instruction is not recommended.

The instruction is being obsoleted and is not recommended for current use. However,
it is still supported for legacy reasons.

225 Invalid label in operand

Operand was not a valid address. For example, if the user tried to issue a CALL to a
MACRO name.

226 Destination address must be word aligned

The destination address is not aligned with the start of a program memory word. For
this device, use even bytes to specify address.

227 Substituting RETLW 0 for RETURN pseudo-op

Using retlw 0 instead of return to resume program execution.

228 Invalid ROM location specified

The data memory location specified is not valid for the operation specified or is
non-existant.

229 extended mode is not in effect -- overriden by command line

A command-line option has disabled extended mode operation.

230 __CONFIG has been deprecated for PIC18 devices. Use directive
CONFIG.

Although you may still use the __config directive for PIC18 MCU devices, it is
strongly recommended that you use the config directive (no leading underscores)
instead. For PIC18FXXJ MCUs, you must user the config directive.
© 2005 Microchip Technology Inc. DS33014J-page 165

Assembler/Linker/Librarian User’s Guide
UNKNOWN WARNING

An internal application error has occurred. (### is the value of the last defined warning
plus 1.)

However, it is not severe enough to keep your code from assembling, i.e., it is a
warning, not an error.

8.4 ASSEMBLER MESSAGES

MPASM assembler messages are listed numerically below:

301 MESSAGE:

User-definable message, invoked with the messg directive (see
Section 4.47 “messg – Create User Defined Message”.)

302 Register in operand not in bank 0. Ensure that bank bits are correct.

This is a commonly seen reminder message to tell you that a variable that is being
accessed in not in bank 0. This message was added to remind you to check your code,
particularly code in banks other than 0. Review the section on banksel
(Section 4.7 “banksel – Generate Bank Selecting Code”) and bankisel
(Section 4.6 “bankisel – Generate Indirect Bank Selecting Code (PIC12/16
MCUs)”) and ensure that your code uses bank bits whenever changing from ANY bank
to ANY other bank (including bank 0).

Since the assembler or linker can't tell which path your code will take, you will always
get this message for any variable not in bank 0. You can use the errorlevel
command to turn this and other messages on and off, but be careful as you may not
spot a banking problem with this message turned off. For more about errorlevel,
see Section 4.29 “errorlevel – Set Message Level”.

A similar message is 306 for paging.

303 Program word too large. Truncated to core size.

The program word (instruction width) is too large for the selected device’s core
(program memory) size. Therefore the word has been truncated to the proper size.

For example, a 14-bit instruction would be truncated to 12 bits to be used by a
PIC16F54.

304 ID Locations value too large. Last four hex digits used.

Only four hex digits are allowed for the ID locations.

305 Using default destination of 1 (file).

If no destination bit is specified, the default is used. Usually code that causes this
message is missing the ,W or ,F after the register name, but sometimes the bug is due
to typing movf instead of movwf.

It is best to fix any code that is causing this message. The default destination could not
be where you want the value stored, and could cause the code to operate strangely.

306 Crossing page boundary -- ensure page bits are set.

Generated code is crossing a page boundary. This is a reminder message to tell you
that code is being directed to a label that is on a page other than page 0. It is not an
error or warning, but a reminder to check your page bits. Use the pagesel directive
(Section 4.52 “pagesel – Generate Page Selecting Code (PIC10/12/16 MCUs)”)
before this point and remember to use another pagesel if returning to page 0.
DS33014J-page 166 © 2005 Microchip Technology Inc.

Errors, Warnings, Messages, and Limitations
The assembler can't tell what path your code will take, so this message is generated
for any label in a page other than 0.You can use the errorlevel command to turn
this and other messages on and off, but be careful as you may not spot a paging
problem with this message turned off. For more about errorlevel, see
Section 4.29 “errorlevel – Set Message Level”.

A similar message is 302 for banking.

307 Setting page bits.

Page bits are being set with the LCALL or LGOTO pseudo-op.

308 Warning level superseded by command line value.

The warning level was specified on the command line as well as in the source file. The
command line has precedence.

309 Macro expansion superseded by command line.

Macro expansion was specified on the command line as well as in the source file. The
command line has precedence.

310 Superseding current maximum RAM and RAM map.

The __maxram directive has been used previously.

311 Operand of HIGH operator was larger than H’FFFF’.

High byte of address returned by high directive was greater than 0xFFFF.

312 Page or Bank selection not needed for this device. No code
generated.

If a device contains only one ROM page or RAM bank, no page or bank selection is
required, and any pagesel, banksel, or bankisel directives will not generate any
code.

313 CBLOCK constants will start with a value of 0.

If the first cblock in the source file has no starting value specified, this message will
be generated.

314 LFSR instruction is not supported on some versions of the 18Cxx2
devices.

See message 315 for more information.

315 Please refer to Microchip document DS80058A for more details

A downloadable pdf of this document, PIC18CXX2 Silicon/Data Sheet Errata, is
available from the Microchip website.

316 W Register modified.

The working (W) register has been modified

317 W Register not modified. BSF/BCF STATUS instructions used
instead.

The working (W) register has not been modified

318 Superseding current maximum ROM and ROM map.

Operation will cause maximum ROM to be exceeded.
© 2005 Microchip Technology Inc. DS33014J-page 167

Assembler/Linker/Librarian User’s Guide
UNKNOWN MESSAGE

An internal application error has occurred. (### is the value of the last defined message
plus 1.)

However, it is not severe enough to keep your code from assembling, i.e., it is a
message, not an error.

8.5 ASSEMBLER LIMITATIONS

8.5.1 General Limitations

• There is a 62 character length restriction for file and path names in the debug
(COD) file produced by MPASM assembler. This can cause problems when
assembling single files with long file names and/or path names.
Work-arounds:
- Shorten your file name or move your file into a directory closer to the root

directory (shorten the path name), and try assembling your file again.
- Create a Mapped drive for the long directory chain.
- Use the linker with the assembler, and not the assembler alone, to generate

your output. There is no character restriction with MPLINK linker.
• If a fully qualified path is specified, only that path will be searched. Otherwise, the

search order is: (1) current working directory, (2) source file directory and (3)
MPASM assembler executable directory.

• There is a source file line limit (expanded) of 200 characters.
• File names are limited to 8.3 format (mpasm.exe only).

8.5.2 Directive Limitations

• Do not use #includes in macros.
• if directive limits

- Maximum nesting depth = 16
• include directive limits

- Maximum nesting depth = 5
- Maximum number of files = 255

• macro directive limits
- Maximum nesting depth = 16

• while directive limits
- Maximum nesting depth = 8
- Maximum number of lines per loop = 100
- Maximum iterations = 256
DS33014J-page 168 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Part 2 – MPLINK Object Linker
Chapter 9. MPLINK Linker Overview ... 177

Chapter 10. Linker Interfaces ... 185

Chapter 11. Linker Scripts .. 187

Chapter 12. Linker Processing .. 193

Chapter 13. Sample Applications .. 197

Chapter 14. Errors, Warnings and Common Problems ... 219
© 2005 Microchip Technology Inc. DS33014J-page 169

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 170 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 9. MPLINK Linker Overview
9.1 INTRODUCTION

An overview of the MPLINK object linker and its capabilities is presented.

Topics covered in this chapter:

• MPLINK Linker Defined
• How MPLINK Linker Works
• How MPLINK Linker Helps You
• Linker Platforms Supported
• Linker Operation
• Linker Input/Output Files

9.2 MPLINK LINKER DEFINED

MPLINK object linker (the linker) combines object modules generated by the
MPASM assembler or the MPLAB C18 C compiler into a single executable (hex) file.
The linker also accepts libraries of object files as input, as generated by the
MPLIB object librarian. The linking process is controlled by a linker script file, which is
also input into MPLINK linker.

For more information on MPASM assembler, see Chapter 1. “MPASM Assembler
Overview”. For more information on MPLAB C18, see C compiler documentation
listed in Recommended Reading.

9.3 HOW MPLINK LINKER WORKS

MPLINK linker performs many functions:

• Locates Code and Data. The linker takes as input relocatable object files. Using
the linker script, it decides where the code will be placed in program memory and
where variables will be placed in RAM.

• Resolves Addresses. External references in a source file generate relocation
entries in the object file. After the linker locates code and data, it uses this
relocation information to update all external references with the actual addresses.

• Generates an Executable. Produces a .hex file that can be programmed into a
PICmicro MCU or loaded into an emulator or simulator to be executed.

• Configures Stack Size and Location. Allows MPLAB C18 to set aside RAM space
for dynamic stack usage.

• Identifies Address Conflicts. Checks to ensure that program/data do not get
assigned to space that has already been assigned or reserved.

• Provides Symbolic Debug Information. Outputs a file that MPLAB IDE uses to
track address labels, variable locations and line/file information for source level
debugging.
© 2005 Microchip Technology Inc. DS33014J-page 171

Assembler/Linker/Librarian User’s Guide
9.4 HOW MPLINK LINKER HELPS YOU

MPLINK linker allows you to produce modular, reusable code. Control over the linking
process is accomplished through a linker script file and with command line options. The
linker ensures that all symbolic references are resolved and that code and data fit into
the available PICmicro MCU device.

MPLINK linker can help you with:

• Reusable Source Code. You can build up your application in small, reusable
modules.

• Libraries. You can make libraries of related functions which can be used in
creating efficient, readily compilable applications.

• MPLAB C18. The Microchip compiler for PIC18 devices requires the use of
MPLINK linker and can be used with precompiled libraries and
MPASM assembler.

• Centralized Memory Allocation. By using application-specific linker scripts,
precompiled objects and libraries can be combined with new source modules and
placed efficiently into available memory at link time.

• Accelerated Development. Since tested modules and libraries don't have to be
recompiled each time a change is made in your code, compilation time may be
reduced.

9.5 LINKER PLATFORMS SUPPORTED

MPLINK linker is distributed as a Windows 32 console application suitable for Windows
95/98 and Windows NT/2000/XP platforms.

9.6 LINKER OPERATION

Below is a diagram of how the MPLINK linker works with other Microchip tools.

The MPLINK linker combines multiple input object modules, generated by the MPASM
assembler or MPLAB C18 C compiler, into a single output executable (.hex) file. A
linker script tells the linker how to combine these modules.

math.lib

MPLINK™

prog.hex

main.c

MPLAB® C18

main.o

prog.asm

MPASM™ assembler

prog.o

18c452.lkr

prog.map
prog.lstprog.cod

source files

object files

linker script files

library files

output filesprog.cof

linker
DS33014J-page 172 © 2005 Microchip Technology Inc.

MPLINK Linker Overview
The linker is executed after assembling or compiling relocatable object modules with
the MPASM assembler and/or MPLAB C18 C compiler. The actual addresses of data
and the location of functions will be assigned when the MPLINK linker is executed. This
means that you may instruct the linker, via a linker script, to place code and data
somewhere within named regions of memory, or, if not specified, to place into any
available memory.

The linker script must also tell the MPLINK linker about the ROM and RAM memory
regions available in the target PICmicro MCU device. Then, it can analyze all the input
files and try to fit the application's routines into ROM and assign its data variables into
available RAM. If there is too much code or too many variables to fit, the linker will give
an error message.

The MPLINK linker also provides flexibility for specifying that certain blocks of data
memory are reusable, so that different routines (which never call each other and which
don't depend upon this data to be retained between execution) can share limited RAM
space.

When using a C compiler, libraries are available for most PICmicro MCU peripheral
functions as well as for many standard C functions. The linker will only extract and link
individual object files that are needed for the current application from the included
libraries. This means that relatively large libraries can be used in a highly efficient
manner.

The MPLINK linker combines all input files to generate the executable output and
ensures that all addresses are resolved. Any function in the various input modules that
attempts to access data or call a routine that has not been allocated or created will
cause the linker to generate an error.

The MPLINK linker also generates symbolic information for debugging your application
with MPLAB IDE (.cof, .lst and .map files).

9.7 LINKER INPUT/OUTPUT FILES

The MPLINK linker combines multiple object files into one executable hex file.

Input Files

Output Files

Object File (.o) Relocatable code produced from a source file.

Library File (.lib) A collection of object files grouped together for convenience.

Linker Script File (.lkr) Description of memory layout for a particular
processor/project.

COFF Object Module File
(.cof, .out)

Debug file used by MPLAB® IDE v6.xx and later.

Symbol and Debug File (.cod) Debug file used by MPLAB IDE v5.xx and earlier.

Hex File Formats (.hex, .hxl,
.hxh)

Hexidecimal file with no debug information. Suitable for use in
programming.

Listing File (.lst) Original source code, side-by-side with final binary code.
Note: Requires linker can find original source files.

Map File (.map) Shows the memory layout after linking. Indicates used and
unused memory regions.
© 2005 Microchip Technology Inc. DS33014J-page 173

Assembler/Linker/Librarian User’s Guide
9.7.1 Object File (.o)

Object files are the relocatable code produced from source files. The MPLINK linker
combines object files and library files, according to a linker script, into a single output
file.

Object files may be created from source files by MPASM assembler and library files
may be created from object files by MPLIB librarian.

9.7.2 Library File (.lib)

Libraries are a convenient way of grouping related object modules. A library file may
be created from object files by MPLIB librarian. For more on the librarian, see
Chapter 15. “MPLIB Librarian Overview”.

9.7.3 Linker Script File (.lkr)

Linker script files are the command files of MPLINK linker. For more information on
linker scripts, see Chapter 11. “Linker Scripts”.

Standard linker script files are located in:

C:\Program Files\Microchip\MPASM Suite\LKR

During the link process, if MPLINK linker is unable to resolve a reference to a symbol,
it will search libraries specified on the command line or in the linker script in an attempt
to resolve the reference. If a definition is found in a library file, the object file containing
that definition will be included in the link.

9.7.4 COFF Object Module File (.cof, .out)

MPLINK linker generates a COFF file which provides debugging information to
MPLAB IDE v6.xx or later. MP2COD.EXE generates the COD files and list files from the
COFF file, and MP2HEX.EXE generates the hex file.

9.7.5 Symbol and Debug File (.cod)

Both the MPASM assembler and the MPLINK linker can generate a COD file for use
with MPLAB IDE v5.xx and earlier. For more information on this format, see
Section 1.7.7 “Symbol and Debug File (.cod)”.

For MPLINK linker, MP2COD.EXE uses the COFF file to generate the COD and list files.
To prevent COD and linker list file generation, use the /w option.

9.7.6 Hex File Formats (.hex, .hxl, .hxh)

Both the MPASM assembler and the MPLINK linker can generate a hex file. For more
information on this format, see Section 1.7.5 “Hex File Formats (.hex, .hxl, .hxh)”.

For MPLINK linker, MP2HEX.EXE uses the COFF file to generate the hex file. To
prevent hex file generation, use the /x option.

9.7.7 Listing File (.lst)

An MPLINK linker listing file provides a mapping of source code to object code. It also
provides a list of symbol values, memory usage information, and the number of errors,
warnings and messages generated. This file may be viewed in MPLAB IDE by:

1. Selecting File>Open to launch the Open dialog
2. Selecting “List files (*.lst)” from the “Files of type” drop-down list
3. Locating the desired list file
4. Clicking on the list file name
5. Clicking Open
DS33014J-page 174 © 2005 Microchip Technology Inc.

MPLINK Linker Overview
Both the MPASM assembler and the MPLINK linker can generate listing files. For
information on the MPASM assembler listing file, see
Section 1.7.3 “Listing File (.lst)”.

An alternative to a listing file would be to use the information in the Disassembly
window (View>Disassembly) in MPLAB IDE.

For MPLINK linker, MP2COD.EXE uses the COFF file to generate the COD and list files.
To prevent COD and linker list file generation, use the /w option.

EXAMPLE 9-1: MPLINK LINKER LISTING FILE

The COFF-to-COD file converter version and list file generation data appear at the top
of each page.

The first column contains the base address in memory where the code will be placed.
The second column is reserved for the machine instruction. This is the code that will be
executed by the PICmicro MCU. The third column displays disassembly code. The
fourth column lists the associated source code line. The fifth column lists the file
associated for the source code line.

MP2COD 3.80.03, COFF to COD File Converter
Copyright (c) 2004 Microchip Technology Inc.
Listing File Generated: Tue Nov 02 14:33:23 2004

Address Value Disassembly Source File
------- ----- ------------------- --------------------------------------- ----
 #include p18f452.inc (1)
 LIST (2)
 ; P18F452.INC Standard Header File,... (2)
 LIST (2)
 udata (1)
 Dest res 1 (1)
 (1)
 RST code 0x0 (1)
000000 ef16 GOTO 0x2c goto Start (1)
000002 f000
 (1)
 PGM code (1)
00002c 0e0a MOVLW 0xa Start movlw 0x0A (1)
00002e 6f80 MOVWF 0x80,0x1 movwf Dest (1)
000030 9780 BCF 0x80,0x3,0x1 bcf Dest, 3 (1)
000032 ef16 GOTO 0x2c goto Start (1)
000034 f000
 end (1)

where:

(1) = D:\Projects32\PIC18F452\SourceReloc.asm
(2) = C:\Program Files\Microchip\MPASM Suite\p18f452.inc

Note: Due to page width restrictions, some comments have been shortened, indi-
cated by “..” Also, associated file names have been replaced by numbers,
i.e., (1) and (2). See the end of the listing of the actual file paths and names.
© 2005 Microchip Technology Inc. DS33014J-page 175

Assembler/Linker/Librarian User’s Guide
9.7.8 Map File (.map)

The map file generated by MPLINK linker can be viewed by selecting File>Open in
MPLAB IDE and choosing the file you specified in the MPLINK linker options. It
provides information on the absolute location of source code symbols in the final
output. It also provides information on memory use, indicating used/unused memory.
This window is automatically reloaded after each rebuild.

The map file contains four tables. The first table (Section Info) displays information
about each section. The information includes the name of the section, its type,
beginning address, whether the section resides in program or data memory, and its size
in bytes.

There are four types of sections:

• code
• initialized data (idata)
• uninitialized data (udata)
• initialized ROM data (romdata)

The following table is an example of the section table in a map file:

 Section Info
 Section Type Address Location Size(Bytes)
--------- --------- --------- --------- ---------
Reset code 0x000000 program 0x000002
.cinit romdata 0x000021 program 0x000004
.code code 0x000023 program 0x000026
.udata udata 0x000020 data 0x000005

The second table (Program Memory Usage) lists program memory addresses that
were used and provides a total usage statistic. For example:

 Program Memory Usage
 Start End
 --------- ---------
 0x000000 0x000005
 0x00002a 0x00002b
 0x0000bc 0x001174
 0x001176 0x002895
 10209 out of 32786 program addresses used, program memory utilization is 31%

The third table in the map file (Symbols – Sorted by Name) provides information about
the symbols in the output module. The table is sorted by the symbol name and includes
the address of the symbol, whether the symbol resides in program or data memory,
whether the symbol has external or static linkage and the name of the file where
defined. The following table is an example of the symbol table sorted by symbol name
in a map file:

Symbols - Sorted by Name
 Name Address Location Storage File
 ------- -------- -------- -------- ---------
 call_m 0x000026 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 loop 0x00002e program static C:\MPASM assemblerV2\MUL8X8.ASM
 main 0x000024 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 mpy 0x000028 program extern C:\MPASM assemblerV2\MUL8X8.ASM
 start 0x000023 program static C:\PROGRA~1\MPLAB\ASMFOO\sampobj.asm
 H_byte 0x000022 data extern C:\MPASM assemblerV2\MUL8X8.ASM
 L_byte 0x000023 data extern C:\MPASM assemblerV2\MUL8X8.ASM
 count 0x000024 data static C:\MPASM assemblerV2\MUL8X8.ASM
 mulcnd 0x000020 data extern C:\MPASM assemblerV2\MUL8X8.ASM
 mulplr 0x000021 data extern C:\MPASM assemblerV2\MUL8X8.ASM
DS33014J-page 176 © 2005 Microchip Technology Inc.

MPLINK Linker Overview
The fourth table in the map file (Symbols – Sorted by Address) provides the same
information that the second table provides, but it is sorted by symbol address rather
than symbol name.

If a linker error is generated, a complete map file can not be created. However, if the
/m option was supplied, an error map file will be created. The error map file contains
only section information; no symbol information is provided. The error map file lists all
sections that were successfully allocated when the error occurred. This file, in
conjunction with the error message, should provide enough context to determine why
a section could not be allocated.
© 2005 Microchip Technology Inc. DS33014J-page 177

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 178 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 10. Linker Interfaces
10.1 INTRODUCTION

MPLINK object linker usage is discussed.

When MPLAB IDE or MPLAB C18 is installed, the MPLINK linker (mplink.exe) is
also installed.

Topics covered in this chapter:

• MPLAB IDE Interface
• Command Line Interface
• Command Line Example

10.2 MPLAB IDE INTERFACE

The MPLINK linker is commonly used with the MPASM assembler in an MPLAB IDE
project to generate relocatable code. For more information on this use, see
“PICmicro Language Tools and MPLAB IDE”.

The linker may also be used in MPLAB IDE with the MPLAB C18 C compiler. For more
information on Microchip compilers, see the MPLAB C18 C compiler documentation
listed in Recommended Reading.

10.3 COMMAND LINE INTERFACE

MPLINK linker can be used in MPLAB IDE or directly from a command line.

When used in MPLAB IDE, all of MPLINK linker's options are available through the
MPLINK Linker tab, accessed from the Project>Build Options dialog.

When using MPLINK linker in a batch file, or directly from the command line, the linker
is invoked with the following syntax:

mplink cmdfiles objfiles [libfiles] [options]

cmdfile is the name of a linker command file. All linker command files must have the
extension .lkr.

objfile is the name of an assembler or compiler generated object file. All object files
must have the extension .o.

libfile is the name of a librarian-created library file. All library files must have the
extension .lib.
© 2005 Microchip Technology Inc. DS33014J-page 179

Assembler/Linker/Librarian User’s Guide
option is one of the linker command-line options described below.

There is no required order for the command line arguments; however, changing the
order can affect the operation of the linker. Specifically, additions to the
library/object directory search path are appended to the end of the current
library/object directory search path as they are encountered on the command
line and in command files.

Library and object files are searched for in the order in which directories occur in the
library/object directory search path. Therefore, changing the order of directories
may change which file is selected.

The /o option is used to supply the name of the generated output COFF file for
MPLAB IDE debugging. Also generated is an Intel format hex file for programming.
This file has the same name as the output COFF file but with the file extension .hex.
If the /o option is not supplied, the default output COFF file is named a.out and the
corresponding hex file is named a.hex.

10.4 COMMAND LINE EXAMPLE

An example of an MPLINK linker command line is shown below.

mplink 18f452.lkr main.o funct.o math.lib /m main.map /o main.out

This instructs MPLINK linker to use the 18f452.lkr linker script file to link the input
modules main.o, funct.o, and the precompiled library math.lib. It also instructs
the linker to produce a map file named main.map. main.o and funct.o must have
been previously compiled or assembled. The output files main.cof and main.hex
will be produced if no errors occur during the link process.

Option Description

/a hexformat Specify format of hex output file.

/h, /? Display help screen.

/k pathlist Add directories to linker script search path.

/l pathlist Add directories to library search path.

/m filename Create map file filename.

/n length Specify number of lines per listing page.

/o filename Specify output file filename. Default is a.out.

/q Quiet mode.

/w Suppress mp2cod.exe Using this option will prevent the
generation of a .cod file and a .lst file.

/x Suppress mp2hex.exe Using this option will prevent the
generation of a .hex file.
DS33014J-page 180 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 11. Linker Scripts
11.1 INTRODUCTION

Linker script files are the command files of the linker. They specify:

• Program and data memory regions for the target part
• Stack size and location (for MPLAB C18)
• A mapping of logical sections in source code into program and data regions

Linker script directives form the command language that controls the linker's behavior.
There are four basic categories of linker script directives. Each of these directives, plus
some useful linker script caveats, are discussed in the topics listed below.

Topics covered in this chapter:

• Standard Linker Scripts
• Linker Script Command Line Information
• Linker Script Caveats
• Memory Region Definition
• Logical Section Definition
• STACK Definition

11.2 STANDARD LINKER SCRIPTS

Standard linker script files are provided for each device and are located, by default, in
the directory: C:\Program Files\Microchip\MPASM Suite\LKR.

Special linker scripts are provided for use with MPLAB C18 that set up a software stack
(see Section 11.7 “STACK Definition”). These files are located, by default, in the
directory: c:\mcc18\lkr.

The linker script files are as follows:

• DevNum – the number associated with the device, e.g., 18f452.lkr for the
PIC18F452 device.

• _e – Extended memory is specified
• i – Reserved memory for ICD resources is specified

When including a standard linker script in your project, it is recommended that you copy
the file into your project folder. This allows you to make changes to the linker script for
that project, if necessary, without compromising the original file.

Note: Linker script comments are specified by ‘//’, i.e., any text between a ‘//’ and
the end of a line is ignored.

Use PIC10/12/16 PIC18

General DevNum.lkr DevNum.lkr
DevNum_e.lkr

MPLAB® ICD 2 DevNumi.lkr DevNumi.lkr
DevNumi_e.lkr
© 2005 Microchip Technology Inc. DS33014J-page 181

Assembler/Linker/Librarian User’s Guide
11.3 LINKER SCRIPT COMMAND LINE INFORMATION

The MPLAB IDE Project Manager can set this information directly. You probably only
need to use these if you are linking from the command line.

• LIBPATH
• LKRPATH
• FILES
• INCLUDE

11.3.1 LIBPATH

Library and object files which do not have a path are searched using the
library/object search path. The following directive appends additional search
directories to the library/object search path:

LIBPATH libpath

where libpath is a semicolon-delimited list of directories.

EXAMPLE 11-1: LIBPATH EXAMPLE

To append the current directory and the directory C:\PROJECTS\INCLUDE to the
library/object search path, the following line should be added to the linker
command file:

LIBPATH .;C:\PROJECTS\INCLUDE

11.3.2 LKRPATH

Linker command files that are included using a linker script INCLUDE directive are
searched for using the linker command file search path. The following directive
appends additional search directories to the linker command file search path:

LKRPATH lkrpath

where lkrpath is a semicolon-delimited list of directories.

EXAMPLE 11-2: LKRPATH EXAMPLE

To append the current directory's parent and the directory C:\PROJECTS\SCRIPTS to
the linker command file search path, the following line should be added to the linker
command file:

LKRPATH ..;C:\PROJECTS\SCRIPTS

11.3.3 FILES

The following directive specifies object or library files for linking:

FILES objfile/libfile [objfile/libfile...]

where objfile/libfile is either an object or library file.

EXAMPLE 11-3: FILES EXAMPLE

To specify that the object module main.o be linked with the library file math.lib, the
following line should be added to the linker command file:

FILES main.o math.lib

Note: More than one object or library file can be specified in a single FILES
directive.
DS33014J-page 182 © 2005 Microchip Technology Inc.

Linker Scripts
11.3.4 INCLUDE

The following directive includes an additional linker command file:

INCLUDE cmdfile

where cmdfile is the name of the linker command file to include.

EXAMPLE 11-4: INCLUDE EXAMPLE

To include the linker command file named mylink.lkr, the following line should be
added to the linker command file:

INCLUDE mylink.lkr

11.4 LINKER SCRIPT CAVEATS

Some linker script caveats:

• You may need to modify the linker script files included with MPLINK linker before
using them.

• You may wish to reconfigure stack size to use MPLAB C18 with MPLINK linker.
• You will need to split up memory pages if your code contains goto or call

instructions without pagesel pseudo-instructions (directives).
• You must not combine data memory regions when using MPLINK linker with

MPLAB C18 C compiler. MPLAB C18 requires that any section be located within a
single bank. See MPLAB C18 documentation for directions on creating variables
larger then a single bank.

11.5 MEMORY REGION DEFINITION

The linker script describes the memory architecture of the PICmicro MCU. This allows
the linker to place code in available ROM space and variables in available RAM space.
Regions that are marked PROTECTED will not be used for general allocation of program
or data. Code or data will only be allocated into these regions if an absolute address is
specified for the section, or if the section is assigned to the region using a SECTION
directive in the linker script file.

11.5.1 Defining RAM Memory Regions

The DATABANK, SHAREBANK and ACCESSBANK directives are used for variable data in
internal RAM. The formats for these directives are as follows.

Banked Registers

DATABANK NAME=memName START=addr END=addr [PROTECTED]

Unbanked Registers

SHAREBANK NAME=memName START=addr END=addr [PROTECTED]

Access Registers (PIC18 devices only)

ACCESSBANK NAME=memName START=addr END=addr [PROTECTED]

where:

memName is any ASCII string used to identify an area in RAM.

addr is a decimal (e.g., .30) or hexadecimal (e.g., 0xFF) number specifying an address.

The optional keyword PROTECTED indicates a region of memory that only can be used
when specifically identified in the source code. The linker will not use the protected
area.
© 2005 Microchip Technology Inc. DS33014J-page 183

Assembler/Linker/Librarian User’s Guide
EXAMPLE 11-5: RAM EXAMPLE

Based on the RAM memory layout shown in PIC16F877A Register File Map, the
DATABANK and SHAREBANK entries in the linker script file would appear as shown in
the examples below the map.

PIC16F877A Register File Map

RAM Memory Declarations for PIC16F877A – Banked Memory

//Special Function Registers in Banks 0-3
DATABANK NAME=sfr0 START=0x0 END=0x1F PROTECTED
DATABANK NAME=sfr1 START=0x80 END=0x9F PROTECTED
DATABANK NAME=sfr2 START=0x100 END=0x10F PROTECTED
DATABANK NAME=sfr3 START=0x180 END=0x18F PROTECTED
//General Purpose RAM in Banks 0-3
DATABANK NAME=gpr0 START=0x20 END=0x6F
DATABANK NAME=gpr1 START=0xA0 END=0xEF
DATABANK NAME=gpr2 START=0x110 END=0x16F
DATABANK NAME=gpr3 START=0x190 END=0x1EF

RAM Memory Declarations for PIC16F877A – Unbanked Memory

//General Purpose RAM - available in all banks
SHAREBANK NAME=gprnobnk START=0x70 END=0x7F
SHAREBANK NAME=gprnobnk START=0xF0 END=0xFF
SHAREBANK NAME=gprnobnk START=0x170 END=0x17F
SHAREBANK NAME=gprnobnk START=0x1F0 END=0x1FF

11.5.2 Defining ROM Memory Regions

The CODEPAGE directive is used for program code, initialized data values, constant
data values and external memory. It has the following format:

CODEPAGE NAME=memName START=addr END=addr [PROTECTED] [FILL=fillvalue]

where:

memName is any ASCII string used to identify a CODEPAGE.

Address Bank 0 Bank 1 Bank 2 Bank 3

00h INDF0 INDF0 INDF0 INDF0

01h TMR0 OPTION_REG TMR0 OPTION_REG

02h PCL PCL PCL PCL

03h STATUS STATUS STATUS STATUS

04h FSR FSR FSR FSR

05h PORTA TRISA — —

: : : : :

0Fh TMR1H — EEADRH —

10h T1CON —

General Purpose
RAM (Banked)

General Purpose
RAM (Banked)

: : :

1Fh ADCON0 ADCON1

20h
General Purpose
RAM (Banked)

General Purpose
RAM (Banked)

:

6Fh

70h

General Purpose RAM (Unbanked):

7Fh
DS33014J-page 184 © 2005 Microchip Technology Inc.

Linker Scripts
addr is a decimal or hexadecimal number specifying an address.

fillValue is a value which fills any unused portion of a memory block. If this value is
in decimal notation, it is assumed to be a 16-bit quantity. If it is in hexadecimal notation
(e.g., 0x2346), it may be any length divisible by full words (16 bits).

The optional keyword PROTECTED indicates a region of memory that only can be used
by program code that specifically requests it.

EXAMPLE 11-6: ROM EXAMPLE

The program memory layout for a PIC16F877A microcontroller is shown below.

Based on this map, the CODEPAGE declarations are:

CODEPAGE NAME=vectors START=0x0000 END=0x0004 PROTECTED
CODEPAGE NAME=page0 START=0x0005 END=0x07FF
CODEPAGE NAME=page1 START=0x0800 END=0x0FFF
CODEPAGE NAME=page2 START=0x1000 END=0x17FF
CODEPAGE NAME=page3 START=0x1800 END=0x1FFF
CODEPAGE NAME=.idlocs START=0x2000 END=0x2003 PROTECTED
CODEPAGE NAME=.config START=0x2007 END=0x2007 PROTECTED
CODEPAGE NAME=eedata START=0x2100 END=0x21FF PROTECTED

11.6 LOGICAL SECTION DEFINITION

Logical sections are used to specify which of the defined memory regions should be
used for a portion of source code. To use logical sections, define the section in the
linker script file with the SECTION directive and then reference that name in the source
file using that language's built-in mechanism (e.g., #pragma section for
MPLAB C18).

The section directive defines a section by specifying its name, and either the block of
program memory in ROM or the block of data memory in RAM which contains the
section:

SECTION NAME=secName { ROM=memName | RAM=memName }

where:

secName is an ASCII string used to identify a section.

memName is a previously defined ACCESSBANK, SHAREBANK, DATABANK, or
CODEPAGE.

Memory Address

Reset Vector 0000h-0003h

Interrupt Vector 0004h

User Memory Space 0005h-07FFh

User Memory Space 0800h-0FFFh

User Memory Space 1000h-17FFh

User Memory Space 1800h-1FFFh

ID Locations 2000h-2003h

Reserved 2004h-2005h

Device ID 2006h

Configuration Memory Space 2007h

Reserved 2008h-20FFh

EEPROM Data 2100h-21FFh
© 2005 Microchip Technology Inc. DS33014J-page 185

Assembler/Linker/Librarian User’s Guide
The ROM attribute must always refer to program memory previously defined using a
CODEPAGE directive. The RAM attribute must always refer to data memory previously
defined with a ACCESSBANK, DATABANK or SHAREBANK directive.

EXAMPLE 11-7: LOGICAL SECTION DEFINITION

To specify that a section whose name is filter_coeffs be loaded into the region of
program memory named constants, the following line should be added to the linker
command file:

SECTION NAME=filter_coeffs ROM=constants

EXAMPLE 11-8: LOGICAL SECTION USAGE

To place MPASM source code into a section named filter_coeffs, use the
following line prior to the desired source code:

filter_coeffs CODE

11.7 STACK DEFINITION

Only MPLAB C18 requires a software stack be set up. The following statement
specifies the stack size and an optional DATABANK where the stack is to be allocated:

STACK SIZE=allocSize [RAM=memName]

where:

allocSize is the size in bytes of the stack and memName is the name of a memory
previously declared using a ACCESSBANK, DATABANK or SHAREBANK statement.

EXAMPLE 11-9: STACK EXAMPLE

To set the stack size to be 0x20 in the RAM area previously defined by gpr0, the
following line should be added to the linker command file:

STACK SIZE=0x20 RAM=gpr0
DS33014J-page 186 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 12. Linker Processing
12.1 INTRODUCTION

Understanding how MPLINK linker processes files and information can be useful to
keep in mind when writing and structuring your application code.

Topics covered in this chapter:

• Linker Processing Overview
• Linker Allocation Algorithm
• Relocation Example
• Initialized Data
• Reserved Section Names

12.2 LINKER PROCESSING OVERVIEW

A linker combines multiple input object modules into a single executable output
module. The input object modules may contain relocatable or absolute sections of code
or data which the linker will allocate into target memory. The target memory architecture
is described in a linker command file. This linker command file provides a flexible
mechanism for specifying blocks of target memory and for mapping sections to the
specified memory blocks. If the linker cannot find a block of target memory in which to
allocate a section, an error is generated. The linker combines like-named input sections
into a single output section. The linker allocation algorithm is described in
Section 12.3 “Linker Allocation Algorithm”.

Once the linker has allocated all sections from all input modules into target memory, it
begins the process of symbol relocation. The symbols defined in each input section
have addresses dependent upon the beginning of their sections. The linker adjusts the
symbol addresses based upon the ultimate location of their allocated sections.

After the linker has relocated the symbols defined in each input section, it resolves
external symbols. The linker attempts to match all external symbol references with a
corresponding symbol definition. If any external symbol references do not have a
corresponding symbol definition, an attempt is made to locate the corresponding
symbol definition in the input library files. If the corresponding symbol definition is not
found, an error is generated.

If the resolution of external symbols was successful, the linker then proceeds to patch
each section's raw data. Each section contains a list of relocation entries which
associate locations in a section's raw data with relocatable symbols. The addresses of
the relocatable symbols are patched into the raw data. The process of relocating
symbols and patching section is described in Section 12.4 “Relocation Example”.

After the linker has processed all relocation entries, it generates the executable output
module.
© 2005 Microchip Technology Inc. DS33014J-page 187

Assembler/Linker/Librarian User’s Guide
12.3 LINKER ALLOCATION ALGORITHM

The linker allocates memory areas to allow maximum control over the location of code
and data, called “sections,” in target memory. There are four kinds of sections that the
linker handles:

1. Absolute Assigned
2. Absolute Unassigned
3. Relocatable Assigned
4. Relocatable Unassigned

An absolute section is a section with a fixed (absolute) address that cannot be changed
by the linker. A relocatable section is a section that will be placed in memory based on
the linker allocation algorithm.

An assigned section is a section that has been assigned a target memory block in the
linker command file. An unassigned section is a section that has been left unassigned
in this file.

The linker performs allocation of absolute (assigned and unassigned) sections first,
relocatable assigned sections next, and relocatable unassigned sections last. The
linker also handles stack allocation.

12.3.1 Absolute Allocation

Absolute sections may be assigned to target memory blocks in the linker command file.
But, since the absolute section's address is fixed, the linker can only verify that if there
is an assigned target memory block for an absolute section, the target memory block
has enough space and the absolute section does not overlap other sections. If no target
memory block is assigned to an absolute section, the linker tries to find the one for it.
If one can not be located, an error is generated. Since absolute sections can only be
allocated at a fixed address, assigned and unassigned sections are performed in no
particular order.

12.3.2 Relocatable Allocation

Once all absolute sections have been allocated, the linker allocates relocatable
assigned sections. For relocatable assigned sections, the linker checks the assigned
target memory block to verify that there is space available; otherwise, an error is
generated. The allocation of relocatable assigned sections occurs in the order in which
they were specified in the linker command file.

After all relocatable assigned sections have been allocated, the linker allocates
relocatable unassigned sections. The linker starts with the largest relocatable
unassigned section and works its way down to the smallest relocatable unassigned
section. For each allocation, it chooses the target memory block with the smallest
available space that can accommodate the section. By starting with the largest section
and choosing the smallest accommodating space, the linker increases the chances of
being able to allocate all the relocatable unassigned sections.

12.3.3 Stack Allocation

The stack is not a section but gets allocated along with the sections. The linker
command file may or may not assign the stack to a specific target memory block. If the
stack is assigned a target memory block, it gets allocated just before the relocatable
assigned sections are allocated. If the stack is unassigned, then it gets allocated after
the relocatable assigned sections and before the other relocatable unassigned
sections are allocated.
DS33014J-page 188 © 2005 Microchip Technology Inc.

Linker Processing
12.4 RELOCATION EXAMPLE

The following example illustrates how the linker relocates sections. Suppose the
following source code fragment occurred in a file:

/* File: ref.c */
char var1; /* Line 1 */
void setVar1(void) /* Line 2 */
 {
 var1 = 0xFF; /* Line 3 */
 }

Suppose this compiles into the following assembly instructions:

0x0000 MOVLW 0xFF
0x0001 MOVLR ?? ; Need to patch with var1's bank
0x0002 MOVWF ?? ; Need to patch with var1's offset

When the compiler processes source line 1, it creates a symbol table entry for the
identifier var1 which has the following information:

Symbol[index] => name=var1, value=0, section=.data, class=extern

When the compiler processes source line 3, it generates two relocation entries in the
code section for the identifier symbol var1 since its final address is unknown until link
time. The relocation entries have the following information:

Reloc[index] => address=0x0001 symbol=var1 type=bank
Reloc[index] => address=0x0002 symbol=var1 type=offset

Once the linker has placed every section into target memory, the final addresses are
known. Once all identifier symbols have their final addresses assigned, the linker must
patch all references to these symbols using the relocation entries. In the example
above, the updated symbol might now be at location 0x125:

Symbol[index] => name=var1, value=0x125, section=.data, class=extern

If the code section above were relocated to begin at address 0x50, the updated
relocation entries would now begin at location 0x51:

Reloc[index] => address=0x0051 symbol=var1 type=bank
Reloc[index] => address=0x0052 symbol=var1 type=offset

The linker will step through the relocation entries and patch their corresponding
sections. The final assembly equivalent output for the above example would be:

0x0050 MOVLW 0xFF
0x0051 MOVLR 0x1 ; Patched with var1's bank
0x0052 MOVWF 0x25 ; Patched with var1's offset

Note: This example deliberately ignores any code generated by MPLAB C18 to
handle the function's entry and exit.
© 2005 Microchip Technology Inc. DS33014J-page 189

Assembler/Linker/Librarian User’s Guide
12.5 INITIALIZED DATA

MPLINK linker performs special processing for input sections with initialized data.
Initialized data sections contain initial values (initializers) for the variables and
constants defined within them. Because the variables and constants within an
initialized data section reside in RAM, their data must be stored in nonvolatile program
memory (ROM). For each initialized data section, the linker creates a section in
program memory. The data is moved by initializing code (supplied with MPLAB C18
and MPASM assembler) to the proper RAM location(s) at start-up.

The names of the initializer sections created by the linker are the same as the initialized
data sections with a _i appended. For example, if an input object module contains an
initialized data section named .idata_main.o, the linker will create a section in
program memory with the name .idata_main.o_i, which contains the data.

In addition to creating initializer sections, the linker creates a section named .cinit
in program memory. The .cinit section contains a table with entries for each
initialized data section. Each entry is a triple which specifies where in program memory
the initializer section begins, where in data memory the initialized data section begins,
and how many bytes are in the initialized data section. The boot code accesses this
table and copies the data from ROM to RAM.

12.6 RESERVED SECTION NAMES

Both the MPASM assembler and the MPLAB C18 C compiler have reserved names for
certain types of sections. Please see the documentation for these tools to ensure that
you do not use a reserved name for your own section. The linker will be unable to
generate the application if there is a section naming conflict.
DS33014J-page 190 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 13. Sample Applications
13.1 INTRODUCTION

You can learn the basics of how to use MPLINK linker from the four sample applications
listed below. These sample applications can be used as templates for your own
application.

• How to Build the Sample Applications
• Sample Application 1 – Modifying the Linker Script

- How to find and use template files
- How to modify the linker script file

• Sample Application 2 – Placing Code and Setting CONFIG Bits
- How to place program code in different memory regions
- How to place data tables in ROM memory
- How to set configuration bits in C

• Sample Application 3 – Using a Boot Loader
- How to partition memory for a boot loader
- How to compile code that will be loaded into external RAM and executed

• Sample Application 4 – Configuring External Memory
- How to create a new linker script memory section
- How to declare external memory through #pragma code directive
- How to access external memories using C pointers

13.2 HOW TO BUILD THE SAMPLE APPLICATIONS

To build the sample applications, you will need the MPASM assembler, the
MPLINK linker and, for some sample applications, the MPLAB C18 C compiler installed
on your PC. The assembler and linker are automatically installed with MPLAB IDE, or
may be acquired separately on the Microchip website or the MPLAB C18 CD-ROM. A
free demo (student) version of the MPLAB C18 C compiler may be obtained on the
Microchip website. The full MPLAB C18 C compiler must be purchased separately.

13.2.1 Using MPLAB IDE

To build an application with MPLAB IDE:

1. Use the Project Wizard under the Project menu to create a project.
- Select the device specified in the sample application.
- Select either the “Microchip MPASM Toolsuite” or the “Microchip C18

Toolsuite” as the active toolsuite. Make sure the executable paths are correct.
- Name the project and place it in its own folder.
- Add the sample files to your project, e.g., source1.c, source2.asm and
script.lkr. If they are not already in the project folder, check the checkbox
next to each file to copy it into the folder.
© 2005 Microchip Technology Inc. DS33014J-page 191

Assembler/Linker/Librarian User’s Guide
2. Once the project is created, select Project>Build Options>Project to open the
Build Options for Project dialog.

- For MPLAB C18 sample applications, click the General tab and enter
c:\mcc18\lib under “Library Path”.

- Click the MPLINK Linker tab and then click the “Generate map file” checkbox
to select it.

3. Select Project>Build All to build the application.
4. If the application fails to build, check that the environment variables discussed in

the next section were set correctly during tool installation.

13.2.2 Using the Command Line

To build an application on the command line:

1. The listed Environment Variables need to be set, as specified. To set these vari-
ables, go to the Command prompt and type SET to view and set the variables.
In Windows OS, go to Start>Settings>Control Panel>System, Advanced tab,
Environment Variables button. View and edit variables here.

- PATH – Make sure the following executables can be found. The path to
MPLAB C18 is only needed if this tool is to be used.

- MCC_INCLUDE – This should point to c:\mcc18\h (default path) if
MPLAB C18 is to be used.

2. For MPLAB C18 compilation, use the following:

mcc18 -p device source1.c

where device is the selected sample application device and source1.c is the
C code source file example. For multiple files, leave a space between each file.

3. For MPASM assembly, use the following:
mpasmwin -p device source2.asm

where device is the selected sample application device and source2.asm is
the assembly code source file example. For multiple files, leave a space between
each file.

4. To link the files and create the application, use MPLINK linker as follows:
mplink script.lkr source1.o source2.o /l c:\mcc18\lib /m app.map

where script.lkr is the linker script file, source1.o is the C code object file,
source2.o is the assembly code object file and app.map is the map file. The
library path, c:\mcc18\lib, is only needed if MPLAB C18 was used, as here to
generate source1.o from source1.c.

Executables Default Path to Executables

mcc18.exe c:\mcc18\bin

mpasmwin.exe c:\mcc18\mpasm
or
c:\program files\microchip\mpasm suite

mplink.exe c:\mcc18\bin
or
c:\program files\microchip\mpasm suite
DS33014J-page 192 © 2005 Microchip Technology Inc.

Sample Applications
13.3 SAMPLE APPLICATION 1 – MODIFYING THE LINKER SCRIPT

In the MPLAB IDE installation, source code templates and linker script templates are
provided for most devices supported by MPLAB IDE. These templates give you a
starting point from which to begin coding and to learn about linker scripts. You are
encouraged to modify both the source code template and the linker template to fit your
needs. In fact, some of the provided linker script files must be edited in order to
successfully build with the provided source code templates.

In this first example, a build error will be analyzed and the linker script will be modified
to rectify the error so that a successful build can be completed.

13.3.1 Locating Template Files

For MPLAB IDE installed in the default location, source code templates may be found
at:

C:\Program Files\Microchip\MPASM Suite\Template

in the following subdirectories:

• Code – Contains absolute assembly code examples by device
• Object – Contains relocatable assembly code examples by device

The relocatable source code template f877atempo.asm for the PIC16F877A may be
found in the Object directory. This template defines an absolute code section for the
reset vector at address 0x0, an absolute code section for the interrupt vector at address
0x04 and a relocatable code section for main.

For MPLAB IDE installed in the default location, linker script templates may be found at:

C:\Program Files\Microchip\MPASM Suite\LKR

The linker script template 16f877a.lkr for the PIC16F877A may be found in this
directory. This template defines a program code section named vectors which starts
at address 0x0 and ends at address 0x04. Other sections are defined as well.

13.3.2 Building the Application

If you were to create an MPLAB IDE project with these two files and attempt to build
the project (see Section 13.2 “How to Build the Sample Applications”), the result in
the Output window would be as follows:

Executing: "C:\Program Files\Microchip\MPASM Suite\MPASMWIN.EXE"
 /q /p16F877A "f877atempo.asm" /l"f877atempo.lst"
 /e"f877atempo.err" /o"f877atempo.o"
Executing: "C:\Program Files\Microchip\MPASM Suite\MPLINK.EXE"
 "16f877a.lkr" "G:\docs\MPASM\User Guide
 Code\linker_example1\f877atempo.o" /o"example1.cof"
MPLINK 3.90.01, Linker
Copyright (c) 2005 Microchip Technology Inc.
Error - section 'INT_VECTOR' can not fit the absolute section.
 Section 'INT_VECTOR' start=0x00000004, length=0x00000018
Errors : 1

BUILD FAILED: Wed Feb 02 17:12:49 2005

Note: Indented lines represent a single wrapped (continued) line.
© 2005 Microchip Technology Inc. DS33014J-page 193

Assembler/Linker/Librarian User’s Guide
These messages tell you that the source code assembled, but the linker gave an error.
The linker error message is saying that a section named INT_VECTOR will not fit in the
memory area into which the linker is attempting to place the code. The error message
further says that the INT_VECTOR section starts at address 0x04 and has a length of
0x018.

13.3.3 Finding the Error

In the source code template, find the code section named INT_VECTOR:

INT_VECTOR CODE 0x004 ; interrupt vector location

This code statement defines an absolute start address at location 0x04, which is the
interrupt vector on the PIC16F877A.

The source code the INT_VECTOR section continues until the next CODE statement.
Counting the number of instructions, you should see that the length of the
INT_VECTOR section is indeed 0x018 bytes. This confirms that this is the code causing
the linker error.

In the linker script template, find the region named vectors:

CODEPAGE NAME=vectors START=0x0000 END=0x0004 PROTECTED

In this statement, a section has been defined with a start address of 0x0 and an end
address of 0x04. This section has been defined with these addresses in order to give
the PROTECTED attribute to both the reset vector location (0x0) and to the reset
location (0x04), i.e., the linker will not automatically place code in the reset section.

As you can now see, the code section INT_VECTOR cannot fit into linker region
vectors and this is causing the error.

TABLE 13-1: PROGRAM MEMORY MAP – PIC16F877A

13.3.4 Fixing the Error

There are several ways to change the linker script that would allow the build to
succeed.

1. If you want the INT_VECTOR code section to be in protected memory, change
the linker script definition of vectors to:

CODEPAGE NAME=vectors START=0x0000 END=0x001F PROTECTED

and the start address of the next section, page0, to:

CODEPAGE NAME=page0 START=0x0020 END=0x07FF

Program
Memory
Address

Linker Script Section Source Code Section

0x0000
:

0x0003 vectors – Reset, interrupt vectors
RESET_VECTOR – Reset vector

0x0004
INT_VECTOR – Interrupt vector0x0005

:

page0 – ROM code space page 00x001C
: MAIN – Main Application Code

0x07FF
DS33014J-page 194 © 2005 Microchip Technology Inc.

Sample Applications
2. If you want the INT_VECTOR code section to be in unprotected memory, change
the linker script definition of vectors to:

CODEPAGE NAME=vectors START=0x0000 END=0x0003 PROTECTED

and the start address of the next section, page0, to:

CODEPAGE NAME=page0 START=0x0004 END=0x07FF

3. If the vectors region is not needed, delete the definition from the linker script
and change the linker script definition of page0 to:

CODEPAGE NAME=page0 START=0x0000 END=0x07FF

13.4 SAMPLE APPLICATION 2 – PLACING CODE AND SETTING CONFIG BITS

This example is for the PIC18F8720 in extended microcontroller mode.

The file eeprom2.asm places interrupt handling code at 0x20000 (external memory).
The assembly code directive, INTHAND CODE, places the code that follows into the
INTHAND section. The linker script file (eeprom.lkr) maps the INTHAND section to
the CODE region that begins at 0x20000.

The file eeprom1.c has a 0x1000 element data table in program memory in the same
code page with the interrupt handlers. The data table is defined in C using the #pragma
romdata directive to place the table in a section called DATTBL. The linker script file
maps the DATTBL section to the CODE region that begins at 0x20000.

Additionally, configuration bits are set in C using the #pragma config directive.

The main function in the C file is placed in the default CODE section because there is
no section directive explicitly assigned.

For additional information, you may wish to reference:

• PIC18F8720 Device Data Sheet (DS39609)
• MPLAB® C18 C Compiler User’s Guide (DS51288)
• External Memory Interfacing Techniques for the PIC18F8XXX (AN869)

TABLE 13-2: PROGRAM MEMORY MAP – PIC18F8720

Program
Memory
Address

Linker Script Section Source Code Section

0x000000
0x000029

vectors – Reset, Interrupts STARTUP

0x00002A
0x01FFFF

page – On-chip Memory PROG – Main Application Code

0x020000
0x1FFFFF

eeprom – External Memory
INTHAND – Interrupt Handler
DATTBL – Data Table

0x200000
0x200007

idlocs – ID Locations

0x300000
0x30000D

config – Configuration Bits CONFIG – Configuration Settings

0x3FFFFE
0x3FFFFF

devid – Device ID

0xF00000
0xF003FF

eedata – EE Data
© 2005 Microchip Technology Inc. DS33014J-page 195

Assembler/Linker/Librarian User’s Guide
13.4.1 C Source Code – eeprom1.c

/* eeprom1.c */

#include <p18f8720.h>

#define DATA_SIZE 0x1000

/* Data Table Setup */

#pragma romdata DATTBL // Put following romdata into section DATTBL
unsigned rom data[DATA_SIZE];
#pragma romdata // Set back to default romdata section

/* Configuration Bits Setup
The #pragma config directive specifies the processor-specific
configuration settings (i.e., configuration bits) to be used by
the application. For more on this directive, see the "MPLAB C18
C Compiler User's Guide" (DS51288). */

#pragma config OSCS = ON, OSC = LP // Enable OSC switching and LP
#pragma config PWRT = ON // Enable POR
#pragma config BOR = ON, BORV = 42 // Enable BOR at 4.2v
#pragma config WDT = OFF // Disable WDT
#pragma config MODE = EM // Use Extended MCU mode

/* Main application code for default CODE section */

void main(void)
{
 while(1)
 {

 } // end while

} // end main

13.4.2 Assembler Source Code – eeprom2.asm

; eeprom2.asm

 list p=18f8720

#include p18f8720.inc

INTHAND code

; place interrupt handling code in here

end
DS33014J-page 196 © 2005 Microchip Technology Inc.

Sample Applications
13.4.3 Linker Script – eeprom.lkr

// $Id: 18f8720.lkr,v 1.1 2003/12/16 14:53:08 GrosbaJ Exp $
// File: 18f8720.lkr
// Sample linker script for the PIC18F8720 processor
// Modified for MPLINK Linker Sample Application 1

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f8720.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x1FFFF
CODEPAGE NAME=eeprom START=0x20000 END=0x1FFFFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=gpr6 START=0x600 END=0x6FF
DATABANK NAME=gpr7 START=0x700 END=0x7FF
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF
DATABANK NAME=gpr10 START=0xA00 END=0xAFF
DATABANK NAME=gpr11 START=0xB00 END=0xBFF
DATABANK NAME=gpr12 START=0xC00 END=0xCFF
DATABANK NAME=gpr13 START=0xD00 END=0xDFF
DATABANK NAME=gpr14 START=0xE00 END=0xEFF
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config

SECTION NAME=STARTUP ROM=vectors // Reset and interrupt vectors
SECTION NAME=PROG ROM=page // main application code space
SECTION NAME=INTHAND ROM=eeprom // Interrupt handlers
SECTION NAME=DATTBL ROM=eeprom // Data tables

STACK SIZE=0x100 RAM=gpr14

13.4.4 Building the Application

To build the application, see Section 13.2 “How to Build the Sample Applications”.
Then, to continue development with MPLAB IDE:

1. Though the configuration bits in code set the microcontroller mode to external,
you must tell MPLAB IDE the range of external memory you wish to use. Select
Configure>External Memory. In the dialog, click “Use External Memory” and
enter “0x1FFFFF” as the “Address Range End”. Click OK.

2. Select Project>Build All to build the application again.
© 2005 Microchip Technology Inc. DS33014J-page 197

Assembler/Linker/Librarian User’s Guide
13.5 SAMPLE APPLICATION 3 – USING A BOOT LOADER

A boot loader is a special program that, when programmed into the target PIC
microcontroller, is responsible for downloading and programming relocatable
application code into the same target PIC microcontroller. The relocatable application
or “user” code is typically transferred to the boot loader through serial communications,
such as RS232.

13.5.1 MPLAB C18 Usage

There are three MPLAB C18 examples showing how to modify the MPLAB C18 linker
scripts and how to use the #pragma code directive in the source code for an
MPLAB C18 boot loader project.

Example 1 shows how to configure an MPLAB C18 linker script and suggests how to
use code directives for an MPLAB C18 boot loader. See Section 13.5.3 “MPLAB C18
Boot Loader Linker Script” and Section 13.5.4 “MPLAB C18 Boot Loader Source
Code”.

Example 2 shows the MPLAB C18 linker script configuration and suggested code
directives for an MPLAB C18 application targeted for a microcontroller that is running
an MPLAB C18 boot loader. See Section 13.5.5 “MPLAB C18 Application Linker
Script” and Section 13.5.6 “MPLAB C18 Application Source Code”.

Example 3 is a mixed language example using an MPLAB C18 application targeted for
a microcontroller, such as the PIC18F8720 with a limited boot block size, running an
MPASM boot loader. A boot loader written in C code will typically require more program
memory than a boot loader written in assembly and therefore requires a microcontroller
with a larger boot block region, such as the PIC18F8722. See Section 13.5.7 “Mixed
Language MPLAB C18 Application Linker Script”, Section 13.5.8 “Mixed
Language MPLAB C18 c018i.c Modifications” and Section 13.5.9 “Mixed
Language MPLAB C18 Application Source Code”.

Boot loader and application code written for MPLAB C18 must use the MPLAB C18
linker scripts to command the linker to place the compiled C source code into
appropriate program memory sections. Typically, boot loader code is compiled and
linked for a destination in the “boot” section of the target microcontroller's program
memory. The “application” code is compiled and linked for a destination inside the user
section of program memory.

13.5.2 MPLAB C18 Memory Map

The first two MPLAB C18 boot loader examples are demonstrated using a PIC18F8722
which offers a configurable boot block size of 2K, 4K or 8K bytes. The remaining
program memory is available for the relocatable application code and data tables. For
these two examples, it is assumed the boot block is configured for 2 Kbytes and
requires modification to the MPLAB C18 linker script file in order to accommodate the
selected boot block size.

The third example, a mix of an MPASM boot loader and MPLAB C18 source code, uses
the PIC18F8720. For the corresponding memory map, see
Section 13.6.7 “MPASM Assembler Memory Map”.
DS33014J-page 198 © 2005 Microchip Technology Inc.

Sample Applications
TABLE 13-3: PROGRAM MEMORY MAP – PIC18F8722

13.5.3 MPLAB C18 Boot Loader Linker Script

The partial MPLAB C18 linker script file shown below demonstrates the modifications
required when building the MPLAB C18 boot loader source code files. The linker will
use this configuration to link the compiled source code into the boot program memory
region starting at 002Ah. The vector locations will be specified in the boot loader source
code using the appropriate #pragma code directives.

// $Id: 18f8722.lkr,v 1.2 2004/09/13 22:07:05 curtiss Exp $
// File: 18f8722.lkr
// Sample linker script for the PIC18F8722 processor
// Modified 2005/02/02 for MPLAB C18 boot loader examples

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f8722.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=boot START=0x2A END=0x7FF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

13.5.4 MPLAB C18 Boot Loader Source Code

The MPLAB C18 boot loader code can be composed of one or more aggregate
relocatable C source files that are compiled and linked together during build time. In
this example, the source code file uses the #pragma code directive to instruct the
linker to place the interrupt vectors at memory locations 0008h and 0018h. A “main”
function must be included, as this is called from the MPLAB C18 startup code that is
added during link process.

#include <p18cxxx.h>
#define RM_RESET_VECTOR 0x000800 // define relocated vector addresses
#define RM_HIGH_INTERRUPT_VECTOR 0x000808
#define RM_LOW_INTERRUPT_VECTOR 0x000818

/** VECTOR MAPPING ***/
#pragma code _HIGH_INTERRUPT_VECTOR = 0x000008
void _high_ISR (void)
{
 _asm goto RM_HIGH_INTERRUPT_VECTOR _endasm
}

Program
Memory
Address

Linker Script Section Source Code Section

0x000000
0x000029

vectors – Reset, Interrupts Vectors, IntH, IntL

0x00002A
0x0007FF

boot – Boot Loader Boot

0x000800
0x000829

rm_vectors – Remapped Vectors R_vectors, R_IntH, R_IntL

0x00082A
0x1FFFFF

user_code – User Code
user_code – Boot Loader Updated
Application Code
© 2005 Microchip Technology Inc. DS33014J-page 199

Assembler/Linker/Librarian User’s Guide
#pragma code _LOW_INTERRUPT_VECTOR = 0x000018
void _low_ISR (void)
{
 _asm goto RM_LOW_INTERRUPT_VECTOR _endasm
}
/** BOOT LOADER CODE **/
#pragma code
void main(void)
{
 //Check Bootload Mode Entry Condition
 if(PORTBbits.RB4 == 1) // If not pressed, User Mode
 {
 _asm goto RM_RESET_VECTOR _endasm
 }
 //Else continue with bootloader code here ...
}
#pragma code user = RM_RESET_VECTOR // This address defined as 0x800 above
 // or can be defined in header file
/** END OF BOOT LOADER **/

13.5.5 MPLAB C18 Application Linker Script

The partial MPLAB C18 linker script file shown below demonstrates the required
modifications when building the MPLAB C18 application source code files. The linker
will use this configuration to link the compiled source code into the user_code
program memory region specified at 082Ah, above the protected boot loader region.

// $Id: 18f8722.lkr,v 1.2 2004/09/13 22:07:05 curtiss Exp $
// File: 18f8722.lkr
// Sample linker script for the PIC18F8722 processor
// Modified 2005/02/02 for MPLAB C18 application code examples

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f8722.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=boot START=0x2A END=0x7FF PROTECTED
CODEPAGE NAME=rm_vectors START=0x800 END=0x829 PROTECTED
CODEPAGE NAME=user_code START=0x82A END=0x1FFFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED
DS33014J-page 200 © 2005 Microchip Technology Inc.

Sample Applications
13.5.6 MPLAB C18 Application Source Code

The MPLAB C18 application code can be composed of one or more aggregate
relocatable C source files that are compiled and linked together during build time. In the
code snippet shown below, the source code file uses the #pragma code directive to
instruct the linker to place the relocated reset and interrupt vectors at the appropriate
memory locations. A main function must be included, as this is called from the
MPLAB C18 startup code that is added during the link process. The linker automatically
includes this MPLAB C18 initialization code provided in file c018i.c and must be
accessed by the application code through an “in-line” assembly goto instruction shown
below.

#include <p18cxxx.h>

/** VECTOR MAPPING ***/
extern void _startup (void); // See c018i.c in your C18 compiler dir

#pragma code _RESET_INTERRUPT_VECTOR = 0x000800
void _reset (void)
{
 _asm goto _startup _endasm
}

#pragma code _HIGH_INTERRUPT_VECTOR = 0x000808
void _high_ISR (void)
{
 ;

}

#pragma code _LOW_INTERRUPT_VECTOR = 0x000818
void _low_ISR (void)
{
 ;
}
/** APPLICATION CODE**/
#pragma code
void main(void)
{
 while(1)
 {
 ; // Main application code here
 }
}
/** END OF APPLICATION ***************************************/
© 2005 Microchip Technology Inc. DS33014J-page 201

Assembler/Linker/Librarian User’s Guide
13.5.7 Mixed Language MPLAB C18 Application Linker Script

The partial MPLAB C18 linker script file shown below demonstrates the required
modifications when building the mixed MPASM boot loader/MPLAB C18 application.
The linker will use this configuration to link the compiled source code into the user
program memory region above the protected boot loader. In this linker script example,
the MPLAB C18 start-up file c018i.o has been remarked out, preventing the linker
from linking this object file to the project.

// $Id: 18f8720.lkr,v 1.2 2004/09/13 22:07:05 curtiss Exp $
// File: 18f8720.lkr
// Sample linker script for the PIC18F8720 processor

LIBPATH .

//FILES c018i.o <-- Note this line to be ignored by linker
FILES clib.lib
FILES p18f8720.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=boot START=0x2A END=0x1FF PROTECTED
CODEPAGE NAME=rm_vectors START=0x200 END=0x229 PROTECTED
CODEPAGE NAME=user_code START=0x22A END=0x1FFFFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF

13.5.8 Mixed Language MPLAB C18 c018i.c Modifications

For a typical MPLAB C18 application, the c018i.c startup code normally specifies
program memory location 0000h as the entry section and is linked into the project by
the linker when specified in the MPLAB C18 linker script. Since the MPLAB C18
application code in this example has been relocated to program memory address
0200h, it is necessary to change the code section _entry_scn definition in the
c018i.c file as shown below and to add the c018i.c source file to the project for
recompiling and linking.

/* $Id: c018i.c,v 1.1 2003/12/09 22:53:19 GrosbaJ Exp $ */
/* Copyright (c)1999 Microchip Technology */
/* MPLAB C18 startup code, including initialized data */
/* Example modification to entry section for relocation to 0200h */
.
.
#pragma code _entry_scn=0x000200
void _entry (void)
{
 _asm goto _startup _endasm

}
.
.

13.5.9 Mixed Language MPLAB C18 Application Source Code

The MPLAB C18 application code can be composed of one or more relocatable C
source files that are compiled and linked together during build time. In the code snippet
shown below, the source code file uses the #pragma code directive to instruct the
linker to place the relocated reset and interrupt vectors at the appropriate memory
locations. A main function must be included, as this is called from the MPLAB C18
startup code that is added during the link process.
DS33014J-page 202 © 2005 Microchip Technology Inc.

Sample Applications
#include <p18cxxx.h>

/** VECTOR MAPPING ***/

#pragma code _HIGH_INTERRUPT_VECTOR = 0x000208
void _high_ISR (void)
{
 ; // ISR goes here
}

#pragma code _LOW_INTERRUPT_VECTOR = 0x000218
void _low_ISR (void)
{
 ; // ISR goes here
}
/** APPLICATION CODE**/
#pragma code
void main(void)
{
 while(1)
 {
 ; // Main application code here
 }
}
/** END OF APPLICATION ***************************************/

13.5.10 Building the MPLAB C18 Application

To build the MPLAB C18 sample application, refer to Section 13.2 “How to Build the
Sample Applications”.

13.5.11 MPASM Assembler Usage

There are three MPASM examples showing suggested linker script modifications and
appropriate source code directive usage for a boot loader and application project.

Example 1 shows an MPASM boot loader. See Section 13.5.14 “MPASM Assembler
Boot Loader Source Code”.

Example 2 shows a multiple module relocatable MPASM application. See
Section 13.5.15 “MPASM Assembler Application Source Code”.

Example 3 incorporates both the MPASM boot loader and multiple module relocatable
MPASM application as a single program memory image. See
Section 13.5.16 “MPASM Assembler Boot Loader Plus Application Source
Code”.

The modified linker script file provided in this example is designed to support all three
of above scenarios. See Section 13.5.13 “MPASM Assembler Linker Script”.

13.5.12 MPASM Assembler Memory Map

The boot loader typically resides in the “boot block” region of the PIC18F8720's
program memory, which is the first 512 bytes of memory, from location 0000h to 01FFh.
The remaining program memory, starting at location 0200h, is available for relocatable
application code and data lookup tables. Other PIC18F microcontrollers offer larger
boot block regions and will require slightly different linker script modifications than what
is represented in this example. However, the concepts shown here can be migrated to
these other PIC microcontrollers. This figure shows the PIC18F8720 memory mapping
for a boot loader and application code.
© 2005 Microchip Technology Inc. DS33014J-page 203

Assembler/Linker/Librarian User’s Guide
TABLE 13-4: PROGRAM MEMORY MAP – PIC18F8720

13.5.13 MPASM Assembler Linker Script

To protect the boot block and vector memory regions, the linker script file uses modified
CODEPAGE directives to establish these memory regions and uses the PROTECTED
modifier to prevent the linker from assigning any relocatable code that is not explicitly
assigned to these regions.

The sample linker script below shows how the linker can assign the relocatable
application code to the user code memory region that is not protected. The other
program memory regions can only be populated if the CODE directive used in the
source files specifies placement of code within these protected memory regions. This
linker script file is designed to accommodate all three boot loader design
considerations demonstrated in this chapter.

boot.lkr – The linker script file for boot loader and application code example projects.

// $Id: 18f8720.lkr,v 1.8 2004/06/18 19:46:16 ConnerJ Exp $
// File: 18f8720.lkr
// Sample linker script for the PIC18F8720 processor
// Modified 2005/02/02 for MPASM boot loader examples

LIBPATH .

CODEPAGE NAME=vector START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=boot_code START=0x2A END=0x1FF PROTECTED
CODEPAGE NAME=r_vectors START=0x200 END=0x229 PROTECTED
CODEPAGE NAME=user_code START=0x22A END=0x1EFFFF
CODEPAGE NAME=const START=0x1F0000 END=0x1FFFFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=gpr6 START=0x600 END=0x6FF
DATABANK NAME=gpr7 START=0x700 END=0x7FF
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF

Program
Memory
Address

Linker Script Section Source Code Section

0x000000
0x000029

vector – Reset, Interrupts Vectors, IntH, IntL

0x00002A
0x0001FF

boot_code – Boot Loader Boot

0x000200
0x000229

r_vectors – Remapped Vectors R_vectors, R_IntH, R_IntL

0x00022A
0x1EFFFF

user_code – User Code
user_code – Boot Loader Updated
Application Code0x1F0000

0x1FFFFF
const – Data Tables
DS33014J-page 204 © 2005 Microchip Technology Inc.

Sample Applications
DATABANK NAME=gpr10 START=0xA00 END=0xAFF
DATABANK NAME=gpr11 START=0xB00 END=0xBFF
DATABANK NAME=gpr12 START=0xC00 END=0xCFF
DATABANK NAME=gpr13 START=0xD00 END=0xDFF
DATABANK NAME=gpr14 START=0xE00 END=0xEFF
DATABANK NAME=gpr15 START=0xF00 END=0xF5F
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config

13.5.14 MPASM Assembler Boot Loader Source Code

In this example, the boot loader is a single source file that will not be linked with any
other source code at build time. The CODE directives used in the boot loader source
code instructs the linker to place the Reset and interrupt vectors at their appropriate
program memory locations for the PIC microcontroller and to place the starting location
of the boot loader executable code just above this region starting at location 002Ah.

The program memory section names Vectors, IntH and IntL are used with the
CODE directive to instruct the linker to place the assembled code that follows each
directive at the specified program memory location. In this case, the boot loader is not
linked with any application code so the relocated Reset and interrupt vectors, 0208h,
0218h and 022Ah, are assumed and therefore are explicitly coded.

18Fboot.asm – This is an example of how the startup portion of a boot loader could be
configured when designing and programming only the boot loader code into the target
PIC microcontroller.

; ***
; 18Fboot.asm
; ***
 LIST P=18F8722
 #include P18cxxx.inc
; ***
Vectors code 0x0000
VReset: bra Boot_Start

IntH code 0x0008
VIntH: bra 0x0208 ; Re-map Interrupt vector to app's code space

IntL code 0x0018
VIntL: bra 0x0218 ; Re-map Interrupt vector to app's code space

; ***
Boot code 0x002A ; Boot loader executable code starts here
Boot_Start:

; Logic to determine if bootloader executes or branch to user's code
; ...
 bra 0x022A ; Branch to user's application code
; ...
; end of boot loader code section
; ***
 END
© 2005 Microchip Technology Inc. DS33014J-page 205

Assembler/Linker/Librarian User’s Guide
13.5.15 MPASM Assembler Application Source Code

In this example the application code is composed of several relocatable source files
that are assembled and linked together during build time. The relocatable reset and
interrupt vector locations are defined in main.asm and are assigned to a specific
program memory location by the CODE directive.

main.asm – This is a sample of the startup portion of a main source code file that
contains the relocated reset and interrupts and is the main entry point into the
application.

; ***
; main.asm
; ***
 LIST P=18F8722
 #include P18cxxx.inc
; ***
R_vectors code 0x200
RVReset: ;Re-mapped RESET vector
 bra main

R_IntH code 0x208 ;Re-mapped HI-priority interrupt vector
RVIntH:
 ;High priority interrupt vector code here
 ;...
 retfie

R_IntL code 0x218 ;Re-mapped LOW-priority interrupt vector
RVIntL:
;Low priority interrupt vector code here
 ;...
 retfie

user_code code 0x22A
main:
; Entry into application code starts here
;
; end of main code section
; ***
END

13.5.16 MPASM Assembler Boot Loader Plus Application Source Code

The final example demonstrates the possibility of combining both the boot loader and
application code into a single program memory image that can be programmed into a
target microcontroller at the same time. Since the boot loader will be assembled and
linked with the application source code files, any references to external labels, defined
in the application code, must be resolved by the linker. To accomplish this, the GLOBAL
directive used in main.asm and the EXTERN directive used in the boot loader source
file allow the linker to resolve the relocated Reset and interrupt vector labels defined in
main.asm and referenced in the 18Fboot_r.asm. For this example, the same boot.lkr
linker script file used in the previous examples is used to link the boot loader and
application files together.

18Fboot_r.asm – This sample version of the boot loader allows for relocatable vectors
that are defined, not in the boot loader, but in the application source code.
DS33014J-page 206 © 2005 Microchip Technology Inc.

Sample Applications
; ***
; 18Fboot_r.asm
; ***
 LIST P=18F8722
 #include P18cxxx.inc

 ; Declare labels used here but defined outside this module
 extern RVReset, RVIntH, RVIntL

; ***
Vectors code 0x0000
VReset: bra Boot_Start

IntH code 0x0008
VIntH: bra RVIntH ; Re-map Interrupt vector

IntL code 0x0018
VIntL: bra RVIntL ; Re-map Interrupt vector

; ***
Boot code 0x002A ; Define explicit Bootloader location
Boot_Start:

; Determine if bootloader should execute or branch to user's code
;
 bra RVReset ; Branch to user's application code
; Else Bootloader execution starts here
;

; ***
 END

main_r.asm – This is a sample version of a main source code file that uses the GLOBAL
directive to make the relocatable reset and interrupt vector labels available to the boot
loader.

; ***
; main_r.asm
; ***
 LIST P=18F8722
 #include P18cxxx.inc

; Define labels here but used outside this module
 global RVReset, RVIntH, RVIntL
; ***
R_vectors code 0x200
RVReset: ;Re-mapped RESET vector
 bra main

R_IntH code 0x208 ;Re-mapped HI-priority interrupt vector
RVIntH:
;High priority interrupt vector code here
;...
 retfie

R_IntL code 0x218 ;Re-mapped LOW-priority interrupt vector
RVIntL:
;Low priority interrupt vector code here
;...
 retfie
© 2005 Microchip Technology Inc. DS33014J-page 207

Assembler/Linker/Librarian User’s Guide
user_code code 0x22A
main:
; Entry into application code starts here
;
; end of main code section
; ***
END

13.5.17 Building the MPASM Assembler Application

To build the MPASM assembler sample application, refer to Section 13.2 “How to
Build the Sample Applications”.

The linker script file for this sample application is a modification of the standard linker
file for the device, and is named boot.lkr.

13.6 SAMPLE APPLICATION 4 – CONFIGURING EXTERNAL MEMORY

Most of the larger pin count PIC microcontrollers have the ability to interface to external
8- or 16-bit data Flash or SRAM memories through the External Memory Bus (EMB).
The PIC18F8722, for example, has 128K bytes of internal program memory
(00000h-1FFFFh). But, when configured for Extended Microcontroller mode, external
program memory space from locations 20000h through 1FFFFFh becomes externally
addressable through the EMB created from the I/O pins.

The use of a linker script file can be extended to other external memory-mapped
devices such as programmable I/O peripherals, real-time clocks or any device that has
multiple configuration or control registers that can be accessed through an 8- or 16-bit
data bus.

13.6.1 MPLAB C18 Usage

The MPLAB C18 linker script file for the PIC18F8722 is modified to instruct the linker
that a new memory region is available by adding a CODEPAGE definition as shown
below. The use of the PROTECTED modifier prevents the linker from assigning any
relocatable code to this region. The name xsram is arbitrary and can be any desired
name. What is important are the START and END addresses, which should match the
physical memory address range of the external memory being used.

CODEPAGE NAME=xsram START=0x020000 END=0x01FFFFF PROTECTED

In addition to the new CODEPAGE, a new logical SECTION is created and assigned to
the program memory region specified in the associated CODEPAGE definition.

SECTION NAME=SRAM_BASE ROM=xsram

In the MPLAB C18 application's source code file, the #pragma romdata directive
instructs the linker to allocate the SRAM's starting address to the memory region
specified by the SRAM_BASE logical section definition. The physical address is provided
by the xsram codepage directive at 20000h. Since the memory region occupied by the
SRAM is program memory, not data memory, the rom qualifier is required in the
declaration of the char array variable, sram[]. In addition, this memory region is
beyond a 16-bit address range (64Kbyte) and therefore requires the use of the far
qualifier in order for C pointers to correctly access this region.

#pragma romdata SRAM_BASE ;Assigns this romdata space at 0x020000
rom far char sram[]; ;Declare an array at starting address
DS33014J-page 208 © 2005 Microchip Technology Inc.

Sample Applications
13.6.2 MPLAB C18 Memory Map

The table below shows the memory mapping for the PIC18F8722 when used with the
1Mbyte external SRAM device. Notice that the first 128K bytes of the external memory
region is overlapped with the 128K bytes of internal program memory space and
therefore cannot be accessed using the external memory bus. Without any additional
external memory address decoding, the first 128K bytes of the SRAM are not
accessible and therefore the first addressable location of SRAM is 20000h.

TABLE 13-5: PROGRAM MEMORY MAP – PIC18F8722 AND 1 MB SRAM

13.6.3 MPLAB C18 Linker Script

The modified PIC18F8722 MPLAB C18 linker script file shown below demonstrates
suggested modifications for external memory applications.

// $Id: 18f8722.lkr,v 1.2 2004/09/13 22:07:05 curtiss Exp $
// File: 18f8722.lkr
// Sample linker script for the PIC18F8722 processor
// This modified version saved as C18_xmem.lkr

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f8722.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x1FFFF
CODEPAGE NAME=xsram START=0x020000 END=0x01FFFFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=gpr6 START=0x600 END=0x6FF
DATABANK NAME=gpr7 START=0x700 END=0x7FF
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF
DATABANK NAME=gpr10 START=0xA00 END=0xAFF
DATABANK NAME=gpr11 START=0xB00 END=0xBFF

Program
Memory
Address

SRAM
Address

LInker Script Section Source Code Section

0x000000
0x000029 0x000000

0x01FFFF

vectors – Reset, Interrupts

0x00002A
0x01FFFF

page – On-chip Memory

0x020000
0x0FFFFF

0x020000
0x0FFFFF

xsram – External Memory SRAM_BASE – romdata space
0x100000
0x1FFFFF
© 2005 Microchip Technology Inc. DS33014J-page 209

Assembler/Linker/Librarian User’s Guide
DATABANK NAME=gpr12 START=0xC00 END=0xCFF
DATABANK NAME=gpr13 START=0xD00 END=0xDFF
DATABANK NAME=gpr14 START=0xE00 END=0xEFF
DATABANK NAME=gpr15 START=0xF00 END=0xF5F
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config
SECTION NAME=SRAM_BASE ROM=xsram

STACK SIZE=0x100 RAM=gpr14

13.6.4 MPLAB C18 Source Code

This is a simple code example showing the use of #pragma romdata for declaration
of external memory and the use of C pointers for accessing this memory region.

#include <p18F8722.h>

#pragma romdata SRAM_BASE ; Assigns this romdata space at 0x02000
rom far char sram[]; ; Declare an array at starting address

#pragma code
void main(void)
{
rom far char* dataPtr; ; Create a "far" pointer

dataPtr = sram; ; Assign this pointer to the memory array
*dataPtr++ = 0xCC; ; Write low byte of 16-bit word to SRAM
*dataPtr = 0x55; ; Write high byte of 16-bit word to SRAM

}

13.6.5 Building the MPLAB C18 Application

To build the MPLAB C18 sample application, refer to Section 13.2 “How to Build the
Sample Applications”.

The large memory model must be used in this project.

• For MPLAB IDE, at the end of Step 2, click the MPLAB C18 tab and choose the
Category of “Memory Model” from the drop-down list. Under “Code Model”, click
“Large code mode (>64K)”.

• For the command line, use the -ml option when compiling.

The linker script file for this sample application is a modification of the standard linker
file for the device.

13.6.6 MPASM Assembler Usage

In an MPASM application's source file, using a simple #define or equ directive
provides an easy way to define the SRAM starting address, which can be used to set
up the table pointers prior to a table read or table write operation.

#define SRAM_BASE_ADDRS 0x20000 ;Base addrs for external
 ;memory device
#define SRAM_END_ADDRS 0x1FFFFF ;End addrs (not required)

Accessing the external program memory through table reads and table writes requires
the table pointer register be set up with the appropriate address as shown by the
following example.
DS33014J-page 210 © 2005 Microchip Technology Inc.

Sample Applications
movlw upper (SRAM_BASE_ADDRS)
movwf TBLPTRU
movlw high (SRAM_BASE_ADDRS)
movwf TBLPTRH
movlw low (SRAM_BASE_ADDRS)
movwf TBLPTRL

13.6.7 MPASM Assembler Memory Map

The figure below shows the memory mapping for the PIC18F8722 when used with the
1Mbyte external SRAM device. Notice that the first 128K bytes of the external memory
region is overlapped with the 128K bytes of internal program memory space and
therefore cannot be accessed using the external memory bus. Without any additional
external memory address decoding, the first 128K bytes of the SRAM are not
accessible and therefore the first addressable location of SRAM is 20000h.

TABLE 13-6: PROGRAM MEMORY MAP – PIC18F8722 AND 1MB SRAM

13.6.8 MPASM Assembler Linker Script

The modified PIC18F8722 MPASM linker script file shown below demonstrates
suggested modifications for external memory applications.

// $Id: 18f8722.lkr,v 1.1 2004/09/09 21:22:33 curtiss Exp $
// File: 18f8722.lkr
// Sample linker script for the PIC18F8722 processor

LIBPATH .

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x1FFFF
CODEPAGE NAME=xsram START=0x020000 END=0x1FFFFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=gpr6 START=0x600 END=0x6FF
DATABANK NAME=gpr7 START=0x700 END=0x7FF
DATABANK NAME=gpr8 START=0x800 END=0x8FF
DATABANK NAME=gpr9 START=0x900 END=0x9FF

Program
Memory
Address

SRAM
Address

LInker Script Section Source Code Section

0x000000
0x000029 0x000000

0x01FFFF

vectors – Reset, Interrupts vectors

0x00002A
0x01FFFF

page – On-chip Memory prog – Main Program

0x020000
0x0FFFFF

0x020000
0x0FFFFF

xsram – External Memory
SRAM_BASE_ADDRS
SRAM_END_ADDRS0x100000

0x1FFFFF
© 2005 Microchip Technology Inc. DS33014J-page 211

Assembler/Linker/Librarian User’s Guide
DATABANK NAME=gpr10 START=0xA00 END=0xAFF
DATABANK NAME=gpr11 START=0xB00 END=0xBFF
DATABANK NAME=gpr12 START=0xC00 END=0xCFF
DATABANK NAME=gpr13 START=0xD00 END=0xDFF
DATABANK NAME=gpr14 START=0xE00 END=0xEFF
DATABANK NAME=gpr15 START=0xF00 END=0xF5F
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config
SECTION NAME=VECTORS ROM=vectors
SECTION NAME=PROG ROM=page
SECTION NAME=SRAM ROM=xsram

13.6.9 MPASM Assembler Source Code

This is a simple code example showing the definition of the external memory SRAM
address at 20000h and how to write a 16-bit value to two consecutive memory locations
using the table pointer register and table write instruction.

 #include <p18F8722.inc>

#define SRAM_BASE_ADDRS 0x20000 ; Base addrs for external memory device
#define SRAM_END_ADDRS 0x1FFFFF ; End addrs (not required)

vectors code
 bra main

prog code
main:
; Example - how to write "0x55CC" to first word location in external SRAM memory

 movwf upper (SRAM_BASE_ADDRS)
 movwf TBLPTRU
 movlw high (SRAM_BASE_ADDRS)
 movwf TBLPTRH
 movlw low (SRAM_BASE_ADDRS)
 movwf TBLPTRL

 movlw 0xCC
 movwf TBLLAT
 tblwt*+ ; Writes "0xCC" to byte location 0x020000;
 ; Increments table pointer to next location
 movlw 0x55
 movwf TBLLAT
 tblwt* ; Write "0x55" to byte location 0x020001;

13.6.10 Building the MPASM Assembler Application

To build the MPASM assembler sample application, refer to Section 13.2 “How to
Build the Sample Applications”.

The linker script file for this sample application is a modification of the standard linker
file for the device.
DS33014J-page 212 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 14. Errors, Warnings and Common Problems
14.1 INTRODUCTION

Error messages and warning messages are produced by the MPLINK linker. These
messages always appear in the listing file directly above each line in which the error
occurred.

Common problems and limitations of the linker tool are also listed here.

Topics covered in this chapter:

• Linker Parse Errors
• Linker Errors
• Linker Warnings
• Library File Errors
• COFF File Errors
• COFF To COD Conversion Errors
• COFF To COD Converter Warnings
• Common Problems

14.2 LINKER PARSE ERRORS

MPLINK linker parse errors are listed alphabetically below:

Could not open 'cmdfile'.

A linker command file could not be opened. Check that the file exists, is in the current
search path, and is readable.

Illegal <filename> for FILES in 'cmdfile:line'.

An object or library filename must end with .o or .lib respectively.

Illegal <filename> for INCLUDE in 'cmdfile:line'.

A linker command filename must end with .lkr.

Illegal <libpath> for LIBPATH in 'cmdfile:line'.

The libpath must be a semicolon delimited list of directories. Enclose directory name
which have embedded spaces in double quotes.

Illegal <lkrpath> for LKRPATH in 'cmdfile:line'.

The lkrpath must be a semicolon delimited list of directories. Enclose directory names
which have embedded spaces in double quotes.

Invalid attributes for memory in 'cmdfile:line'.

A CODEPAGE, DATABANK, or SHAREBANK directive does not specify a NAME,
START, or END attribute; or another attribute is specified which is not valid.
© 2005 Microchip Technology Inc. DS33014J-page 213

Assembler/Linker/Librarian User’s Guide
Invalid attributes for SECTION in 'cmdfile:line'.

A SECTION directive must have a NAME and either a RAM or ROM attribute.

Invalid attributes for STACK in 'cmdfile:line'.

A STACK directive does not specify a SIZE attribute, or another attribute is specified
which is not valid.

-k switch requires <pathlist>.

A semicolon delimited path must be specified. Enclose directory names containing
embedded spaces with double quotes. For example:

-k ..;c:\mylkr;"c:\program files\microchip\mpasm suite\lkr"

-l switch requires <pathlist>.

A semicolon delimited path must be specified. Enclose directory names containing
embedded spaces with double quotes. For example:

-l ..;c:\mylib;"c:\program files\microchip\mpasm suite"

-m switch requires <filename>.

A map filename must be specified. For example: -m main.map.

Multiple inclusion of library file 'filename'.

A library file has been included multiple times either on the command line or with a
FILES directive in a linker command file. Remove the multiple references.

Multiple inclusion of linker command file 'cmdfile'.

A linker command file can only be included once. Remove multiple INCLUDE directives
to the referenced linker command file.

Multiple inclusion of object file 'filename'.

An object file has been included multiple times either on the command line or with a
FILES directive in a linker command file. Remove the multiple references.

-n switch requires <length>.

The number of source lines per listing file page must be specified. A length of zero will
suppress pagination of the listing file.

-o switch requires <filename>.

A COFF output filename must be specified. For example: -o main.out

Unknown switch: 'cmdline token'.

An unrecognized command line switch was supplied. Refer to the Usage
documentation for the list of supported switches.

Unrecognized input in 'cmdfile:line'.

All statements in a linker command file must begin with a directive keyword or the
comment Delimiter //.
DS33014J-page 214 © 2005 Microchip Technology Inc.

Errors, Warnings and Common Problems
14.3 LINKER ERRORS

MPLINK linker errors are listed alphabetically below:

Absolute code section 'secName' must start at a word-aligned address.

Program code sections will only be allocated at word-aligned addresses. MPLINK will
give this error message if an absolute code section address is specified that is not
word-aligned.

Configuration settings have been specified for address 0x300001 in
more than one object module. Found in 'foo.o' previously found in
'bar.o'

This error is issued when MPLAB C18's #pragma config directive has been used in
two separate .c files (e.g., foo.c and bar.c) with settings specified from the same
configuration byte. Set configuration bits for a given byte in a single .c file.

Conflicting types for symbol ‘symName’.

Symbol symName is defined in different locations as different types.

Could not find definition of symbol 'symName' in file ‘filename’.

A symbol symName is used without being defined in file filename.

Could not find file 'filename'.

An input object or library file was specified which does not exist, or cannot be found in
the linker path.

Could not open map file 'filename' for writing.

Verify that if filename exists, it is not a read-only file.

Could not resolve section reference ‘symName’ in file 'filename'.

The symbol symName is an external reference. No input module defines this symbol.
If the symbol is defined in a library module, ensure that the library module is included
on the command line or in the linker command file using the FILES directive.

Could not resolve symbol 'symName' in file 'filename'.

The symbol symName is an external reference. No input module defines this symbol.
If the symbol is defined in a library module, ensure that the library module is included
on the command line or in the linker command file using the FILES directive.

Duplicate definition of memory 'memName'.

All CODEPAGE and DATABANK directives must have unique NAME attributes.

Duplicate definitions of SECTION 'secName'.

Each SECTION directive must have unique NAME attributes. Remove duplicate
definitions.

File ‘filename’, section ‘secName’, performs a call to symbol ‘symName’
which is not in the lower half of a page.

For 12-bit devices, the program counter (PC), bit 8, is cleared in the CALL instruction
or any modify PCL instruction. Therefore, all subroutine calls or computed jumps are
limited to the first 256 locations of any program memory page (512 words long.)
© 2005 Microchip Technology Inc. DS33014J-page 215

Assembler/Linker/Librarian User’s Guide
Inconsistent length definitions of SHAREBANK 'memName'.

All SHAREBANK definitions which have the same NAME attribute must be of equal
length.

Internal Coff output file is corrupt.

The linker cannot write to the COFF file.

Memory 'memName' overlaps memory 'memName'.

All CODEPAGE blocks must specify unique memory ranges which do not overlap.
Similarly DATABANK and SHAREBANK blocks may not overlap.

Mixing extended and non-extended mode modules not allowed

The linker cannot link a mixture of extended mode modules and non-extended mode
modules. Extended and non-extended memory modes apply to PIC18 devices.

When using MPASM to create object file modules, extended memory mode is
enabled/disabled on the command line using the /y option. In MPLAB IDE, select
Project>Build Options, MPASM Assembly tab, and check/uncheck the option
“Extended Mode”.

When using MPLAB C18 to create object file modules, extended memory mode is
enabled/disabled on the command line using the --extended option. In MPLAB IDE,
select Project>Build Options, MPLAB C18 tab, and check/uncheck the option
“Extended Mode”.

When using linker scripts, those with the suffix _e apply to extended mode use.

MPASM's __CONFIG directive (found in 'bar.o') cannot be used with
either MPLAB C18's #pragma config directive or MPASM's CONFIG
directive (found in 'foo.o')

This error message is issued when MPASM assembler's __CONFIG directive is
specified in a .asm file (e.g., bar.asm) and MPLAB C18's #pragma config directive
is specified in a .c file (e.g., foo.c). Set configuration bits using either MPASM
assembler's __CONFIG directive or MPLAB C18's #pragma config directive.

Multiple map files declared: 'filename1', 'filename2'.

The -m <mapfile> switch was specified more than once.

Multiple output files declared: 'filename1', 'filename2'.

The -o <outfile> switch was specified more than once.

Multiple STACK definitions.

A STACK directive occurs more than once in the linker command file or included linker
command files. Remove the multiple STACK directives.

No input object files specified.

No input object or library file was specified to the linker. Enter files to link.

Overlapping definitions of SHAREBANK 'memName'.

A SHAREBANK directive specifies a range of addresses that overlap a previous
definition. Overlaps are not permitted.
DS33014J-page 216 © 2005 Microchip Technology Inc.

Errors, Warnings and Common Problems
{PCL | TOSH | TOSU | TOSL} cannot be used as the destination of a
MOVFF or MOVSF instruction.

The MOVFF instruction has unpredictable results when its destination is the PCL,
TOSH, TOSU, or TOSL registers. MPLINK will not allow the destination of a MOVFF
instruction to be replaced with any of these addresses.

Processor types do not agree across all input files.

Each object module and library file specifies a processor type or a processor family. All
input modules processor types or families must match.

Section {absolute|access|overlay|share} types for 'secName' do not
match across input files.

A section with the name secName occurs in more than one input file. However, in some
files it is marked as either an absolute, access, overlay or shared section, and in some
it is not. Change the section's type in the source files and rebuild the object modules.

Section 'secName' can not fit the absolute section. Section 'secName'
start=0xHHHH, length=0xHHHH.

A section which has not been assigned to a memory in the linker command file can not
be allocated. Use the -m <mapfile> switch to generate an error map file. The error
map will show the sections which were allocated prior to the error. More memory must
be made available by adding a CODEPAGE, SHAREBANK, or DATABANK directive,
or by removing the PROTECTED attribute, or the number of input sections must be
reduced.

Section 'romName' can not have a 'RAM' memory attribute specified in
the linker command file.

Use only the ROM attribute when defining the section in the linker command file.

Section 'secName' can not fit the section. Section 'secName'
length='0xHHHH'.

A section which has not been assigned to a memory in the linker command file can not
be allocated. Use the -m <mapfile> switch to generate an error map file. The error
map will show the sections which were allocated prior to the error. More memory must
be made available by adding a CODEPAGE, SHAREBANK, or DATABANK directive,
or by removing the PROTECTED attribute, or the number of input sections must be
reduced.

Section 'secName' contains code and can not have a 'RAM' memory
attribute specified in the linker command file.

Use only the ROM attribute when defining the section in the linker command file.

Section 'secName' contains initialized data and can not have a 'ROM'
memory attribute specified in the linker command file.

Use only the RAM attribute when defining the section in the linker command file.

Section 'secName' contains initialized rom data and can not have a
'RAM' memory attribute specified in the linker command file.

Use only the ROM attribute when defining the section in the linker command file.
© 2005 Microchip Technology Inc. DS33014J-page 217

Assembler/Linker/Librarian User’s Guide
Section 'secName' contains uninitialized data and can not have a 'ROM'
memory attribute specified in the linker command file.

Use only the RAM attribute when defining the section in the linker command file.

Section 'secName' has a memory 'memName' which can not fit the
absolute section. Section 'secName' start=0xHHHH, length=0xHHHH.

The memory which was assigned to the section in the linker command file either does
not have space to fit the section, or the section will overlap another section. Use the
 -m <mapfile> switch to generate an error map file. The error map will show the
sections which were allocated prior to the error.

Section 'secName' has a memory 'memName' which can not fit the
section. Section 'secName' length='0xHHHH'.

The memory which was assigned to the section in the linker command file either does
not have space to fit the section, or the section will overlap another section. Use the
-m <mapfile> switch to generate an error map file. The error map will show the
sections which were allocated prior to the error.

Section 'secName' has a memory 'memName'' which is not defined in the
linker command file.

Add a CODEPAGE, DATABANK, or SHAREBANK directive for the undefined memory
to the linker command file.

Section 'secName' type is non-overlay and absolute but occurs in more
than one input file.

An absolute section with the name secName may only occur in a single input file.
Relocatable sections with the same name may occur in multiple input files. Either
remove the multiple absolute sections in the source files or use relocatable sections
instead.

Starting addresses for absolute overlay section ‘secName’ do not match
accross all input files.

A section with the name secName occurs in more than one input file. However, its
absolute overlay starting address varies between files. Change the section's address
in the source files and rebuild the object modules.

Symbol 'symName' has multiple definitions.

A symbol may only be defined in a single input module.

Symbol 'symName' is not word-aligned. It cannot be used as the target of
a {branch | call or goto} instruction.

The target of a branch, call, or goto instruction was at an odd address, but the
instruction encoding cannot reference addresses that are not word-aligned.

symbol 'symName' out of range of relative branch instruction.

A relative branch instruction had symName as its target, but a 2’s complement
encoding of the offset to symName wouldn't fit in the limited number of instruction bits
used for the target of a branch instruction.
DS33014J-page 218 © 2005 Microchip Technology Inc.

Errors, Warnings and Common Problems
The _CONFIG_DECL macro can only be specified in one module. Found
in 'foo.o' previously found in 'bar.o'

This error is issued when MPLAB C18's _CONFIG_DECL macro is specified in two
separate .c files (e.g., foo.c and bar.c). Set configuration bits by using the
_CONFIG_DECL macro in only one .c file.

The _CONFIG_DECL macro (found in 'foo.o') cannot be used with
MPASM's __CONFIG directive (found in 'bar.o')

This error is issued when MPLAB C18's _CONFIG_DECL macro is used in a .c file
(e.g., foo.c) and MPASM assembler's __CONFIG directive is used in a .asm file
(e.g., bar.asm). Set configuration bits using either the _CONFIG_DECL macro from
MPLAB C18 or the __CONFIG directive in MPASM assembler.

The _CONFIG_DECL macro (found in 'foo.o') cannot be used with either
MPLAB C18's #pragma config directive or MPASM's CONFIG directive
(found in 'bar.o')

This error is issued when MPLAB C18's _CONFIG_DECL macro is used in a .c file
(e.g., foo.c) with either MPLAB C18's #pragma config directive in a second .c file
(e.g., bar.c) or MPASM assembler's __CONFIG directive in a .asm file (e.g.,
bar.asm). Set configuration bits by using only one of _CONFIG_DECL, #pragma
config, or __CONFIG directive.

TRIS argument is out of range '0xHHHH' not between '0xHHHH' and
'0xHHHH'.

Check the device data sheet to determine acceptable hex values for the TRIS register
you are using.

Undefined CODEPAGE 'memName' for SECTION 'secName'.

A SECTION directive with a ROM attribute refers to a memory block which has not
been defined. Add a CODEPAGE directive to the linker command file for the undefined
memory block.

Undefined DATABANK/SHAREBANK 'memName' for SECTION
'secName'.

A SECTION directive with a RAM attribute refers to a memory block that has not been
defined. Add a DATABANK or SHAREBANK directive to the linker command file for the
undefined memory block.

Undefined DATABANK/SHAREBANK 'memName' for STACK.

No input object files specified. At least one object module must be specified either on
the command line or in the linker command file using the FILES directive.

Unknown section type for 'secName'.

The section type for ‘secName’ needs to be defined.

Unknown section type for 'secName' in file 'filename'.

An input object or library module is not of the proper file type or it may be corrupted.

Unsupported processor type in file ‘filename’.

A processor was specified that is not currently supported by the linker. See the Readme
file for a list of supported devices.
© 2005 Microchip Technology Inc. DS33014J-page 219

Assembler/Linker/Librarian User’s Guide
Unsupported relocation type.

A relocation type was specified that is not currently supported by the linker.

14.4 LINKER WARNINGS

MPLINK linker warnings are listed alphabetically below:

Fill pattern for memory 'memName' doesn't divide evenly into unused
section locations. Last value was truncated.

If a fill pattern is specified for a ROM section, but the free space in that section isn't
evenly divisible by the fill pattern size, this warning will be issued to warn of incomplete
patterns.

'/a' command line option ignored with '/x'

/x prevents the generation of a .hex file. Therefore, specifying the format of hex output
file with /a is irrelevant.

'/n' command line option ignored with '/w'

/w prevents the generation of a .cod file and a .lst file. Therefore, specifying the number
of lines per listing page with /n is irrelevant.

14.5 LIBRARY FILE ERRORS

MPLINK linker library file processing errors are listed alphabetically below:

Could not build member 'memberName' in library file 'filename'.

The file is not a valid library file or it is corrupted.

Could not open library file 'filename' for reading.

Verify that filename exists and can be read.

Could not open library file 'filename' for writing.

Verify that if filename exists, it is not read-only.

Could not write archive magic string in library file 'filename'.

The file may be corrupted.

Could not write member header for 'memberName' in library file
'filename'.

The file may be corrupted.

File 'filename' is not a valid library file.

Library files must end with .lib.

Library file 'filename' has a missing member object file.

The file not a valid object file or it may be corrupted.

'memberName' is not a member of library 'filename'.

memberName can not be extracted or deleted from a library unless it is a member of
the library.
DS33014J-page 220 © 2005 Microchip Technology Inc.

Errors, Warnings and Common Problems
Symbol 'symName' has multiple external definitions.

A symbol may only be defined once in a library file.

14.6 COFF FILE ERRORS

All the COFF errors listed below indicate an internal error in the file's contents. Please
contact Microchip support if any of these errors are generated.

• Coff file 'filename' could not read file header.
• Coff file 'filename' could not read line numbers.
• Coff file 'filename' could not read optional file header.
• Coff file 'filename' could not read raw data.
• Coff file 'filename' could not read relocation info.
• Coff file 'filename' could not read section header.
• Coff file 'filename' could not read string table.
• Coff file 'filename' could not read string table length.
• Coff file 'filename' could not read symbol table.
• Coff file 'filename' could not write file header.
• Coff file 'filename' could not write lineinfo.
• Coff file 'filename' could not write optional file header.
• Coff file 'filename' could not write raw data.
• Coff file 'filename' could not write reloc.
• Coff file 'filename' could not write section header.
• Coff file 'filename' could not write string.
• Coff file 'filename' could not write string table length.
• Coff file 'filename' could not write symbol.
• Coff file 'filename', cScnHdr.size() != cScnNum.size().
• Coff file 'filename' does not appear to be a valid COFF file.
• Coff file 'filename' has relocation entries but an empty symbol table.
• Coff file 'filename' missing optional file header.
• Coff file 'filename' section['xx'] has an invalid s_offset.
• Coff file 'filename', section 'secName' line['xx'] has an invalid l_fcnndx.
• Coff file 'filename', section 'secName' line['xx'] has an invalid l_srcndx.
• Coff file 'filename', section 'secName' reloc['xx'] has an invalid r_symndx.
• Coff file 'filename' symbol['xx'] has an invalid n_offset.
• Coff file 'filename' symbol['xx'] has an invalid n_scnum.
• Coff file 'filename', symbol['xx'] has an invalid index.
• Could not find section name 'secName' in string table.
• Could not find symbol name 'symName' in string table.
• Could not open Coff file 'filename' for reading.
• Could not open Coff file 'filename' for writing.
• Could not read archive magic string in library file 'filename'.
• Unable to find aux_file name in string table.
• Unable to find section name in string table.
• Unable to find symbol name in string table.
© 2005 Microchip Technology Inc. DS33014J-page 221

Assembler/Linker/Librarian User’s Guide
14.7 COFF TO COD CONVERSION ERRORS

Source file ‘filename’ name exceeds file format maximum of 63
characters.

The COD file name, including the path, has a 63-character limit.

Coff file 'filename' must contain at least one 'code' or 'romdata' section.

In order to convert a COFF file to a COD file, the COFF file must have either a code or
a romdata section.

Could not open list file 'filename' for writing.

Verify that if filename exists and that it is not a read-only file.

14.8 COFF TO COD CONVERTER WARNINGS

Could not open source file 'filename'. This file will not be present in the
list file.

The referenced source file could not be opened. This can happen if an input
object/library module was built on a machine with a different directory structure. If
source level debugging for the file is desired, rebuild the object or library on the current
machine.

14.9 COD FILE ERRORS

All the COD file errors listed below indicate an internal error in the file's contents.
Please contact Microchip support if any of these errors are generated.

• Cod file 'filename' does not have a proper debug message table.
• Cod file 'filename' does not have a proper Index.
• Cod file 'filename' does not have a proper line info table.
• Cod file 'filename' does not have a proper local vars table.
• Cod file 'filename' does not have a proper long symbol table.
• Cod file 'filename' does not have a proper memory map table.
• Cod file 'filename' does not have a proper name table.
• Cod file 'filename' does not have a proper symbol table.
• Cod file 'filename' does not have a properly formed first directory.
• Cod file 'filename' does not have a properly formed linked directory.
• Could not open Cod file ‘filename’ for reading.
• Could not open Cod file ‘filename’ for writing.
• Could not write ‘blockname’ block in Cod file ‘filename’.
• Could not write directory in Cod file ‘filename’.

14.10 HEX FILE ERRORS

Selected hex format does not support byte addresses above 64kb; use
INHX32 format!

Your code addresses more than 64 Kbytes of program memory, but your selected hex
format cannot support this. Switch to INHX32 format.
DS33014J-page 222 © 2005 Microchip Technology Inc.

Errors, Warnings and Common Problems
Could not open hex file ‘filename’ for writing.

The hex file was never created due to other errors, or an exisiting hex file is
write-protected.

14.11 COMMON PROBLEMS

Although I set up listing file properties with MPASM assembler
directives, none of these properties is appearing in my listing file.

Although MPASM assembler is often used with MPLINK object linker, MPASM
assembler directives are not supported in MPLINK linker scripts. See
Section 10.3 “Command Line Interface” for control of listing and hex file output.
© 2005 Microchip Technology Inc. DS33014J-page 223

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 224 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Part 3 – MPLIB Object Librarian
Chapter 15. MPLIB Librarian Overview ... 233

Chapter 16. Librarian Interfaces .. 237

Chapter 17. Errors ... 239
© 2005 Microchip Technology Inc. DS33014J-page 225

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 226 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 15. MPLIB Librarian Overview
15.1 INTRODUCTION

An overview of the MPLIB object librarian and its capabilities is presented.

Topics covered in this chapter:

• What is MPLIB Librarian
• How MPLIB Librarian Works
• How MPLIB Librarian Helps You
• Librarian Operation
• Librarian Input/Output Files

15.2 WHAT IS MPLIB LIBRARIAN

MPLIB object librarian (the librarian) combines object modules generated by the
MPASM assembler or the MPLAB C18 C compiler into a single library file. This file may
then be inputted into the MPLINK object linker.

15.3 HOW MPLIB LIBRARIAN WORKS

A librarian manages the creation and modification of library files. A library file is simply
a collection of object modules that are stored in a single file. There are several reasons
for creating library files:

• Libraries make linking easier. Since library files can contain many object files, the
name of a library file can be used instead of the names of many separate object
files when linking.

• Libraries help keep code small. Since a linker only uses the required object files
contained in a library, not all object files which are contained in the library
necessarily wind up in the linker's output module.

• Libraries make projects more maintainable. If a library is included in a project, the
addition or removal of calls to that library will not require a change to the link
process.

• Libraries help to convey the purpose of a group of object modules. Since libraries
can group together several related object modules, the purpose of a library file is
usually more understandable than the purpose of its individual object modules.
For example, the purpose of a file named math.lib is more apparent than the
purpose of power.o, ceiling.o, and floor.o.
© 2005 Microchip Technology Inc. DS33014J-page 227

Assembler/Linker/Librarian User’s Guide
15.4 HOW MPLIB LIBRARIAN HELPS YOU

The MPLIB librarian can help you in the following ways:

• The librarian makes linking easier because single libraries can be included
instead of many smaller files.

• The librarian helps keep code maintainable by grouping related modules together.
• The librarian commands allow libraries to be created and modules to be added,

listed, replaced, deleted, or extracted.

15.5 LIBRARIAN OPERATION

Below is a diagram of how the MPLIB librarian works with other Microchip tools.

The librarian combines multiple input object modules, generated by the
MPASM assembler or MPLAB C18 C compilers, into a single output library (.lib) file.
Library files are used in conjunction with the MPLINK linker to produce executable
code.

mult.c

MPLAB® C18

mult.o

MPLIB™ Librarian

math.lib

avg.asm

MPASM™

avg.o

add.asm

add.o

source files

object files

library file

Assembler
MPASM

Assembler
DS33014J-page 228 © 2005 Microchip Technology Inc.

MPLIB Librarian Overview
15.6 LIBRARIAN INPUT/OUTPUT FILES

The MPLIB librarian combines multiple object files into one library (.lib) file.

Input Files

Output Files

15.6.1 Object File (.o)

Object files are the relocatable code produced from source files. The MPLIB librarian
combines several object files into a single library file.

15.6.2 Library File (.lib)

A library file may be created from object files by the MPLIB librarian or may be an
existing standard library.

Object File (.o) Relocatable code produced from source files.

Library File (.lib) A collection of object files grouped together for
convenience.
© 2005 Microchip Technology Inc. DS33014J-page 229

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 230 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 16. Librarian Interfaces
16.1 INTRODUCTION

How to use MPLIB librarian is discussed here. For information on how librarian output
can be used with the MPASM assembler and the MPLINK linker, see the
documentation for these tools.

Topics covered in this chapter:

• MPLAB IDE Interface
• Command Line Options
• Command Line Examples and Tips

16.2 MPLAB IDE INTERFACE

The MPLIB librarian may be used with MPLAB IDE to create a library file from project
object files instead of an executable (hex) file.

With your project open in MPLAB IDE, select Project>Build Options>Project. In the
Build Options dialog, click on the MPASM/C17/C18 Suite tab. Click the radio button
next to “Build library target (invoke MPLIB)”. Then click OK. Now when you build your
project, you will be building a library file.
© 2005 Microchip Technology Inc. DS33014J-page 231

Assembler/Linker/Librarian User’s Guide
16.3 COMMAND LINE OPTIONS

MPLIB librarian is invoked with the following syntax:

mplib [/q] /{ctdrx} LIBRARY [MEMBER...]

Options

16.4 COMMAND LINE EXAMPLES AND TIPS

Example of Use

Suppose you wanted to create a library named dsp.lib from three object modules
named fft.o, fir.o, and iir.o. The following command line would produce the
desired results:

mplib /c dsp.lib fft.o fir.o iir.o

To display the names of the object modules contained in a library file named dsp.lib,
the following command line would be appropriate:

mplib /t dsp.lib

Tips

MPLIB librarian creates library files that may contain only a single external definition for
any symbol. Therefore, if two object modules define the same external symbol, the
librarian will generate an error if both object modules are added to the same library file.

To minimize the code and data space which results from linking with a library file, the
library's member object modules should be as small as possible. Creating object
modules that contain only a single function can significantly reduce code space.

Option Description Detail

/c Create library Creates a new LIBRARY with the listed MEMBER(s)

/d Delete member Deletes MEMBER(s) from the LIBRARY; if no MEMBER
is specified the LIBRARY is not altered

/q Quiet mode No output is displayed

/r Add/replace member If MEMBER(s) exist in the LIBRARY, then they are
replaced, otherwise MEMBER is appended to the end of
the LIBRARY

/t List members Prints a table showing the names of the members in the
LIBRARY

/x Extract member If MEMBER(s) exist in the LIBRARY, then they are
extracted. If no MEMBER is specified, all members will be
extracted
DS33014J-page 232 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Chapter 17. Errors
17.1 INTRODUCTION

MPLIB librarian detects the following sources of error and reports them.

Topics covered in this chapter:

• Librarian Parse Errors
• Library File Errors
• COFF File Errors

17.2 LIBRARIAN PARSE ERRORS

MPLIB librarian parse errors are listed alphabetically below:

Invalid Object Filename

All object filenames must end with '.o'.

Invalid Switch

An unsuppported switch was specified. For a list of supported swtiches, refer to
command line options.

Library Filename is Required

All commands require a library filename. All library filenames must end with '.lib'.

17.3 LIBRARY FILE ERRORS

For a list of library file errors, see Section 14.5 “Library File Errors”.

17.4 COFF FILE ERRORS

For a list of COFF File Errors, see Section 14.6 “COFF File Errors”.
© 2005 Microchip Technology Inc. DS33014J-page 233

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 234 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Part 4 – Appendices
Appendix A. Instruction Sets ... 243

Appendix B. Useful Tables ... 255
© 2005 Microchip Technology Inc. DS33014J-page 235

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 236 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Appendix A. Instruction Sets
A.1 INTRODUCTION

PICmicro MCU instruction sets are used in developing applications with
MPASM assembler, MPLINK object linker and MPLIB object librarian.

Instructions listed here are grouped either by instruction width or device number.

Topics covered are:

• Key to 12/14-Bit Instruction Width Instruction Sets
- 12-Bit Instruction Width Instruction Set
- 14-Bit Instruction Width Instruction Set
- 12-Bit/14-Bit Instruction Width Pseudo-Instructions

• Key to PIC18 Device Instruction Set
- PIC18 Device Instruction Set
- PIC18 Device Extended Instruction Set

A.2 KEY TO 12/14-BIT INSTRUCTION WIDTH INSTRUCTION SETS

Instruction
Width

Devices Supported

12-Bit PIC10F2XX, PIC12C5XX, PIC12CE5XX, PIC16X5X, PIC16C505

14-Bit PIC12C67X, PIC12CE67X, PIC12F629/675, PIC16X

16-Bit PIC18X

Field Description

Register Files

dest Destination either the WREG register or the specified register file location. See d.

f Register file address (5-bit, 7-bit or 8-bit).

p Peripheral register file address (5-bit).

r Port for TRIS.

x Don’t care (‘0’ or ‘1’).
The assembler will generate code with x = 0. It is the recommended form of use for
compatibility with all Microchip software tools.

Literals

k Literal field, constant data or label.
k 4-bit.
kk 8-bit.
kkk 12-bit.
© 2005 Microchip Technology Inc. DS33014J-page 237

Assembler/Linker/Librarian User’s Guide
Bits

b Bit address within an 8-bit file register (0 to 7).

d Destination select bit.
d = 0: store result in WREG.
d = 1: store result in file register f (default).

i Table pointer control.
i = 0: do not change.
i = 1: increment after instruction execution.

s Destination select bit.
s = 0: store result in file register f and WREG.
s = 1: store result in file register f (default).

t Table byte select.
t = 0: perform operation on lower byte.
t = 1: perform operation on upper byte.

' ' Bit values, as opposed to Hex value.

Named Registers

BSR Bank Select Register. Used to select the current RAM bank.

OPTION OPTION Register.

PCL Program Counter Low Byte.

PCH Program Counter High Byte.

PCLATH Program Counter High Byte Latch.

PCLATU Program Counter Upper Byte Latch.

PRODH Product of Multiply High Byte.

PRODL Product of Multiply Low Byte.

TBLATH Table Latch (TBLAT) High Byte.

TBLATL Table Latch (TBLAT) Low Byte.

TBLPTR 16-bit Table Pointer (TBLPTRH:TBLPTRL). Points to a Program Memory location.

WREG Working register (accumulator).

Named Bits

C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.

TO Time-out bit.

PD Power-down bit.

GIE Global Interrupt Enable bit(s).

Named Device Features

PC Program Counter.

TOS Top-of-Stack.

WDT Watchdog Timer.

Misc. Descriptors

() Contents.

→, ↔ Assigned to.

< > Register bit field.

Field Description
DS33014J-page 238 © 2005 Microchip Technology Inc.

Instruction Sets
A.3 12-BIT INSTRUCTION WIDTH INSTRUCTION SET

Microchip’s baseline 8-bit microcontroller family uses a 12-bit wide instruction set. All
instructions execute in a single instruction cycle unless otherwise noted. Any unused
opcode is executed as a NOP.

The instruction set is grouped into the following categories: byte-oriented file register
operations, bit-oriented file register operations and core literal and control operations.
Additionally, instructions that apply to both 12-bit and 14-bit devices are shown in
Section A.5 “12-Bit/14-Bit Instruction Width Pseudo-Instructions”.

Instruction opcode is show in hex by making certain assumptions, either listed in the
key or as a footnote. For more information on the opcode bit values for each instruction,
as well as the number of cycles per instruction, Status bits affected and complete
instruction details, see the relevant device data sheet.

TABLE A-1: 12-BIT BYTE-ORIENTED FILE REGISTER OPERATIONS

Hex Mnemonic Description Function

1Ef* ADDWF f,d Add W and f WREG + f → dest

16f* ANDWF f,d AND W and f WREG .AND. f → dest

06f CLRF f Clear f 0 → f

040 CLRW Clear W 0 → WREG

26f* COMF f,d Complement f .NOT. f → dest

0Ef* DECF f,d Decrement f f – 1 → dest

2Ef* DECFSZ f,d Decrement f, skip if zero f – 1 → dest, skip if zero

2Af* INCF f,d Increment f f + 1 → dest

3Ef* INCFSZ f,d Increment f, skip if zero f + 1 → dest, skip if zero

12f* IORWF f,d Inclusive OR W and f WREG .OR. f → dest

22f* MOVF f,d Move f f → dest

02f MOVWF f Move W to f WREG → f

000 NOP No operation

36f* RLF f,d Rotate left f

32f* RRF f,d Rotate right f

0Af* SUBWF f,d Subtract W from f f - WREG → dest

3Af* SWAPF f,d Swap halves f f(0:3) ↔ f(4:7) → dest

1Af* XORWF f,d Exclusive OR W and f WREG .XOR. f → dest

* Assuming default bit value for d.

TABLE A-2: 12-BIT BIT-ORIENTED FILE REGISTER OPERATIONS

Hex Mnemonic Description Function

4bf BCF f,b Bit clear f 0 → f(b)

5bf BSF f,b Bit set f 1 → f(b)

6bf BTFSC f,b Bit test, skip if clear skip if f(b) = 0

7bf BTFSS f,b Bit test, skip if set skip if f(b) = 1

7......0C

register f

7......0C

register f
© 2005 Microchip Technology Inc. DS33014J-page 239

Assembler/Linker/Librarian User’s Guide
A.4 14-BIT INSTRUCTION WIDTH INSTRUCTION SET

Microchip’s midrange 8-bit microcontroller family uses a 14-bit wide instruction set.
This instruction set consists of 36 instructions, each a single 14-bit wide word. Most
instructions operate on a file register, f, and the working register, WREG (accumulator).
The result can be directed either to the file register or the WREG register or to both in
the case of some instructions. A few instructions operate solely on a file register
(BSF, for example).

The instruction set is grouped into the following categories: byte-oriented file register
operations, bit-oriented file register operations and core literal and control operations.
Additionally, instructions that apply to both 12-bit and 14-bit devices are shown in
Section A.5 “12-Bit/14-Bit Instruction Width Pseudo-Instructions”.

Instruction opcode is show in hex by making certain assumptions, either listed in the
key or as a footnote. For more information on the opcode bit values for each instruction,
as well as the number of cycles per instruction, Status bits affected and complete
instruction details, see the relevant device data sheet.

TABLE A-3: 12-BIT LITERAL AND CONTROL OPERATIONS

Hex Mnemonic Description Function

Ekk ANDLW kk AND literal and W kk .AND. WREG → WREG

9kk CALL kk Call subroutine PC + 1 → TOS, kk → PC

004 CLRWDT Clear watchdog timer 0 → WDT (and Prescaler if assigned)

Akk GOTO kk Goto address (k is nine bits) kk → PC(9 bits)

Dkk IORLW kk Incl. OR literal and W kk .OR. WREG → WREG

Ckk MOVLW kk Move Literal to W kk → WREG

002 OPTION Load OPTION Register WREG → OPTION Register

8kk RETLW kk Return with literal in W kk → WREG, TOS → PC

003 SLEEP Go into Standby Mode 0 → WDT, stop oscillator

00r TRIS r Tristate port r WREG → I/O control reg r

Fkk XORLW kk Exclusive OR literal and W kk .XOR. WREG → WREG

TABLE A-4: 14-BIT BYTE-ORIENTED FILE REGISTER OPERATIONS

Hex Mnemonic Description Function

07df ADDWF f,d Add W and f W + f → d

05df ANDWF f,d AND W and f W .AND. f → d

01'1'f CLRF f Clear f 0 → f

01xx CLRW Clear W 0 → W

09df COMF f,d Complement f .NOT. f → d

03df DECF f,d Decrement f f – 1 → d

0Bdf DECFSZ f,d Decrement f, skip if zero f – 1 → d, skip if 0

0Adf INCF f,d Increment f f + 1 → d

0Fdf INCFSZ f,d Increment f, skip if zero f + 1 → d, skip if 0

04df IORWF f,d Inclusive OR W and f W .OR. f → d

08df MOVF f,d Move f f → d

00'1'f MOVWF f Move W to f W → f

0000 NOP No operation

0Ddf RLF f,d Rotate left f

7......0C

register f
DS33014J-page 240 © 2005 Microchip Technology Inc.

Instruction Sets
0Cdf RRF f,d Rotate right f

02df SUBWF f,d Subtract W from f f – W → d

0Edf SWAPF f,d Swap halves f f(0:3) ↔ f(4:7) → d

06df XORWF f,d Exclusive OR W and f W .XOR. f → d

TABLE A-5: 14-BIT BIT-ORIENTED FILE REGISTER OPERATIONS

Hex Mnemonic Description Function

4bf BCF f,b Bit clear f 0 → f(b)

5bf BSF f,b Bit set f 1 → f(b)

6bf BTFSC f,b Bit test, skip if clear skip if f(b) = 0

7bf BTFSS f,b Bit test, skip if set skip if f(b) = 1

TABLE A-6: 14-BIT LITERAL AND CONTROL OPERATIONS

Hex Mnemonic Description Function

3Ekk ADDLW kk Add literal to W kk + WREG → WREG

39kk ANDLW kk AND literal and W kk .AND. WREG → WREG

2'0'kkk CALL kkk Call subroutine PC + 1 → TOS, kk → PC

0064 CLRWDT Clear Watchdog Timer 0 → WDT (and Prescaler if assigned)

2'1'kkk GOTO kkk Goto address (k is nine bits) kk → PC(9 bits)

38kk IORLW kk Incl. OR literal and W kk .OR. WREG → WREG

30kk MOVLW kk Move Literal to W kk → WREG

0062 OPTION Load OPTION register WREG → OPTION Register

0009 RETFIE Return from Interrupt TOS → PC, 1 → GIE

34kk RETLW kk Return with literal in W kk → WREG, TOS → PC

0008 RETURN Return from subroutine TOS → PC

0063 SLEEP Go into Standby Mode 0 → WDT, stop oscillator

3Ckk SUBLW kk Subtract W from literal kk - WREG → WREG

006r TRIS r Tristate port r WREG → I/O control reg r

3Akk XORLW kk Exclusive OR literal and W kk .XOR. WREG → WREG

TABLE A-4: 14-BIT BYTE-ORIENTED FILE REGISTER OPERATIONS (CONTINUED)

Hex Mnemonic Description Function

7......0C

register f
© 2005 Microchip Technology Inc. DS33014J-page 241

Assembler/Linker/Librarian User’s Guide
A.5 12-BIT/14-BIT INSTRUCTION WIDTH PSEUDO-INSTRUCTIONS

The following pseudo-instructions are applicable to both the 12-bit and 14-bit
instruction word devices. These pseudo-instructions are alternative mnemonics for
standard PICmicro instructions or are macros that generate one or more PICmicro
instructions. Use of these pseudo-instructions is not recommended for new designs.
These are documented mainly for historical purposes.

TABLE A-7: 12-BIT/14-BIT SPECIAL INSTRUCTION MNEMONICS

Mnemonic Description
Equivalent

Operation(s)
Status

ADDCF f,d Add Carry to File BTFSC
INCF

3,0
f,d

Z

ADDDCF f,d Add Digit Carry to File BTFSC
INCF

3,1
f,d

Z

B k Branch GOTO k -

BC k Branch on Carry BTFSC
GOTO

3,0
k

-

BDC k Branch on Digit Carry BTFSC
GOTO

3,1
k

-

BNC k Branch on No Carry BTFSS
GOTO

3,0
k

-

BNDC k Branch on No Digit Carry BTFSS
GOTO

3,1
k

-

BNZ k Branch on No Zero BTFSS
GOTO

3,2
k

-

BZ k Branch on Zero BTFSC
GOTO

3,2
k

-

CLRC Clear Carry BCF 3,0 -

CLRDC Clear Digit Carry BCF 3,1 -

CLRZ Clear Zero BCF 3,2 -

LCALL k Long Call BCF/BSF
BCF/BSF
CALL

0x0A,3
0x0A,4
k

LGOTO k Long GOTO BCF/BSF
BCF/BSF
GOTO

0x0A,3
0x0A,4
k

MOVFW f Move File to W MOVF f,0 Z

NEGF f,d Negate File COMF
INCF

f,1
f,d

Z

SETC Set Carry BSF 3,0 -

SETDC Set Digit Carry BSF 3,1 -

SETZ Set Zero BSF 3,2 -

SKPC Skip on Carry BTFSS 3,0 -

SKPDC Skip on Digit Carry BTFSS 3,1 -

SKPNC Skip on No Carry BTFSC 3,0 -

SKPNDC Skip on No Digit Carry BTFSC 3,1 -

SKPNZ Skip on Non Zero BTFSC 3,2 -

SKPZ Skip on Zero BTFSS 3,2 -

SUBCF f,d Subtract Carry from File BTFSC
DECF

3,0
f,d

Z

DS33014J-page 242 © 2005 Microchip Technology Inc.

Instruction Sets
A.6 KEY TO PIC18 DEVICE INSTRUCTION SET

SUBDCF f,d Subtract Digit Carry from File BTFSC
DECF

3,1
f,d

Z

TSTF f Test File MOVF f,1 Z

Field Description

Register Files

dest Destination either the WREG register or the specified register file location. See d.

f Register file address.
f 8-bit (0x00 to 0xFF).
f' 12-bit (0x000 to 0xFFF). This is the source address.
f” 12-bit (0x000 to 0xFFF). This is the destination address.

r 0, 1 or 2 for FSR number.

x Don’t care (‘0’ or ‘1’).
The assembler will generate code with x = 0. It is the recommended form of use for
compatibility with all Microchip software tools.

z Indirect addressing offset.
z' 7-bit offset value for indirect addressing of register files (source).
z” 7-bit offset value for indirect addressing of register files (destination).

Literals

k Literal field, constant data or label.
k 4-bit.
kk 8-bit.
kkk 12-bit.

Offsets, Increments/Decrements

n The relative address (2’s complement number) for relative branch instructions, or the direct
address for Call/Branch and Return instructions.

*
*+
*-
+*

The mode of the TBLPTR register for the table read and table writes.
Only used with table read (TBLRD) and table write (TBLWT) instructions:

No Change to register
Post-Increment register
Post-Decrement register
Pre-Increment register

Bits

a RAM access bit
a = 0: RAM location in Access RAM (BSR register is ignored).
a = 1: RAM bank is specified by BSR register (default).

b Bit address within an 8-bit file register (0 to 7).

d Destination select bit.
d = 0: store result in WREG.
d = 1: store result in file register f (default).

s Fast Call/Return mode select bit.
s = 0: do not update into/from shadow registers (default).
s = 1: certain registers loaded into/from shadow registers (Fast mode).

' ' Bit values, as opposed to Hex value.

Named Registers

BSR Bank Select Register. Used to select the current RAM bank.

FSR File Select Register.

PCL Program Counter Low Byte.

TABLE A-7: 12-BIT/14-BIT SPECIAL INSTRUCTION MNEMONICS (CONTINUED)

Mnemonic Description
Equivalent

Operation(s)
Status
© 2005 Microchip Technology Inc. DS33014J-page 243

Assembler/Linker/Librarian User’s Guide
A.7 PIC18 DEVICE INSTRUCTION SET

Microchip's new high-performance 8-bit microcontroller family uses a 16-bit wide
instruction set. This instruction set consists of 76 instructions, each a single 16-bit wide
word (2 bytes). Most instructions operate on a file register, f, and the working register,
WREG (accumulator). The result can be directed either to the file register or the WREG
register or to both in the case of some instructions. A few instructions operate solely on
a file register (BSF, for example).

The instruction set is grouped into the following categories: byte-oriented file register
operations, bit-oriented file register operations, control operations, literal operations
and memory operations. Additionally, extended mode instructions are shown in
Section A.8 “PIC18 Device Extended Instruction Set”.

Instruction opcode is show in hex by making certain assumptions, either listed in the
key or as a footnote. For more information on the opcode bit values for each instruction,
as well as the number of cycles per instruction, Status bits affected and complete
instruction details, see the relevant device data sheet.

PCH Program Counter High Byte.

PCLATH Program Counter High Byte Latch.

PCLATU Program Counter Upper Byte Latch.

PRODH Product of Multiply High Byte.

PRODL Product of Multiply Low Byte.

STATUS STATUS Register

TABLAT 8-bit Table Latch.

TBLPTR 21-bit Table Pointer (points to a Program Memory location).

WREG Working register (accumulator).

Named Bits

C, DC, Z, OV, N ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.

TO Time-out bit.

PD Power-down bit.

PEIE Peripheral Interrupt Enable bit.

GIE, GIEL/H Global Interrupt Enable bit(s).

Named Device Features

MCLR Master clear device reset.

PC Program Counter.

TOS Top-of-Stack.

WDT Watchdog Timer.

Misc. Descriptors

() Contents.

→ Assigned to.

< > Register bit field.

Field Description

TABLE A-8: PIC18 BYTE-ORIENTED REGISTER OPERATIONS

Hex Mnemonic Description Function

27f* ADDWF f,d,a ADD WREG to f WREG + f → dest

23f* ADDWFC f,d,a ADD WREG and Carry bit to f WREG + f + C → dest

17f* ANDWF f,d,a AND WREG with f WREG .AND. f → dest

6Bf* CLRF f,a Clear f 0 → f
DS33014J-page 244 © 2005 Microchip Technology Inc.

Instruction Sets
1Ff* COMF f,d,a Complement f .NOT. f → dest

63f* CPFSEQ f,a Compare f with WREG, skip if
f=WREG

f – WREG, if f = WREG, PC + 4 → PC
else PC + 2 → PC

65f* CPFSGT f,a Compare f with WREG, skip if f >
WREG

f – WREG, if f > WREG, PC + 4 → PC
else PC + 2 → PC

61f* CPFSLT f,a Compare f with WREG, skip if f <
WREG

f – WREG, if f < WREG, PC + 4 → PC
else PC + 2 → PC

07f* DECF f,d,a Decrement f f – 1 → dest

2Ff* DECFSZ f,d,a Decrement f, skip if 0 f – 1 → dest, if dest = 0, PC + 4 → PC
else PC + 2 → PC

4Ff* DCFSNZ f,d,a Decrement f, skip if not 0 f – 1 → dest, if dest ≠ 0, PC + 4 → PC
else PC + 2 → PC

2Bf* INCF f,d,a Increment f f + 1 → dest

3Ff* INCFSZ f,d,a Increment f, skip if 0 f + 1 → dest, if dest = 0, PC + 4 → PC
else PC + 2 → PC

4Bf* INFSNZ f,d,a Increment f, skip if not 0 f + 1 → dest, if dest ≠ 0, PC + 4 → PC
else PC + 2 → PC

13f* IORWF f,d,a Inclusive OR WREG with f WREG .OR. f → dest

53f* MOVF f,d,a Move f f → dest

Cf'
Ff”

MOVFF f',f” Move f' to fd” (second word) f' → f”

6Ff* MOVWF f,a Move WREG to f WREG → f
03f* MULWF f,a Multiply WREG with f WREG * f → PRODH:PRODL

6Df* NEGF f,a Negate f -f → f
37f* RLCF f,d,a Rotate left f through Carry

47f* RLNCF f,d,a Rotate left f (no carry)

33f* RRCF f,d,a Rotate right f through Carry

43f* RRNCF f,d,a Rotate right f (no carry)

69f* SETF f,a Set f 0xFF → f
57f* SUBFWB f,d,a Subtract f from WREG with

Borrow
WREG – f – C → dest

5Ff* SUBWF f,d,a Subtract WREG from f f – WREG → dest

5Bf* SUBWFB f,d,a Subtract WREG from f with
Borrow

f – WREG – C → dest

3Bf* SWAPF f,d,a Swap nibbles of f f<3:0> → dest<7:4>, f<7:4> → dest<3:0>

67f* TSTFSZ f,a Test f, skip if 0 PC + 4 → PC, if f = 0, else PC + 2 → PC

1Bf* XORWF f,d,a Exclusive OR WREG with f WREG .XOR. f → dest

* Assuming default bit values for d and a.

TABLE A-8: PIC18 BYTE-ORIENTED REGISTER OPERATIONS (CONTINUED)

Hex Mnemonic Description Function

7......0C

register f

7......0

register f

7......0C

register f

7......0

register f
© 2005 Microchip Technology Inc. DS33014J-page 245

Assembler/Linker/Librarian User’s Guide
TABLE A-9: PIC18 BIT-ORIENTED REGISTER OPERATIONS

Hex Mnemonic Description Function

91f* BCF f,b,a Bit Clear f 0 → f

81f* BSF f,b,a Bit Set f 1 → f

B1f* BTFSC f,b,a Bit test f, skip if clear if f = 0, PC + 4 → PC, else PC + 2 → PC

A1f* BTFSS f,b,a Bit test f, skip if set if f = 1, PC + 4 → PC, else PC + 2 → PC

71f* BTG f,b,a Bit Toggle f f → f

* Assuming b = 0 and default bit value for a.

TABLE A-10: PIC18 CONTROL OPERATIONS

Hex Mnemonic Description Function

E2n BC n Branch if Carry if C = 1, PC + 2 + 2 * n → PC, else PC + 2 → PC

E6n BN n Branch if Negative if N = 1, PC + 2 + 2 * n → PC, else PC + 2 → PC

E3n BNC n Branch if Not Carry if C = 0, PC + 2 + 2 * n → PC, else PC + 2 → PC

E7n BNN n Branch if Not Negative if N = 0, PC + 2 + 2 * n → PC, else PC + 2 → PC

E5n BNOV n Branch if Not Overflow if OV = 0, PC + 2 + 2 * n → PC, else PC + 2 → PC

E1n BNZ n Branch if Not Zero if Z = 0, PC + 2 + 2 * n → PC, else PC + 2 → PC

E4n BOV n Branch if Overflow if OV = 1, PC + 2 + 2 * n → PC, else PC + 2 → PC

D'0'n BRA n Branch Unconditionally PC + 2 + 2 * n → PC

E0n BZ n Branch if Zero if Z = 1, PC + 2 + 2 * n → PC, else PC + 2 → PC

ECkk*
Fkkk

CALL n,s Call Subroutine 1st word
2nd word

PC + 4 → TOS, n → PC<20:1>,
if s = 1, WREG → WREGs,
 STATUS → STATUSs, BSR → BSRs

0004 CLRWDT Clear Watchdog Timer 0 → WDT, 0 → WDT postscaler,
1 → TO,1 → PD

0007 DAW Decimal Adjust WREG if WREG<3:0> >9 or DC = 1, WREG<3:0>+6 →
WREG<3:0>,
else WREG<3:0> → WREG<3:0>;
if WREG<7:4> >9 or C = 1, WREG<7:4> + 6 →
WREG<7:4>,
else WREG<7:4> → WREG<7:4>;

EFkk
Fkkk

GOTO n Go to address 1st word
2nd word

n → PC<20:1>

0000 NOP No Operation No Operation

Fxxx NOP No Operation No Operation (2-word instructions)

0006 POP Pop top of return stack (TOS) TOS-1 → TOS

0005 PUSH Push top of return stack (TOS) PC + 2 → TOS

D'1'n RCALL n Relative Call PC + 2 → TOS, PC + 2 + 2 * n → PC

00FF RESET Software device reset Same as MCLR reset

0010* RETFIE s Return from interrupt
(and enable interrupts)

TOS → PC, 1 → GIE/GIEH or PEIE/GIEL,
if s = 1, WREGs → WREG, STATUSs →
STATUS,
BSRs → BSR, PCLATU/PCLATH unchngd.

0012* RETURN s Return from subroutine TOS → PC, if s = 1, WREGs → WREG,
STATUSs → STATUS, BSRs → BSR,
PCLATU/PCLATH are unchanged

0003 SLEEP Enter SLEEP Mode 0 → WDT, 0 → WDT postscaler,
1 → TO, 0 → PD

 * Assuming default bit value for s.
DS33014J-page 246 © 2005 Microchip Technology Inc.

Instruction Sets
TABLE A-11: PIC18 LITERAL OPERATIONS

Hex Mnemonic Description Function

0Fkk ADDLW kk Add literal to WREG WREG + kk → WREG

0Bkk ANDLW kk AND literal with WREG WREG .AND. kk → WREG

09kk IORLW kk Inclusive OR literal with WREG WREG .OR. kk → WREG

EErk
F0kk

LFSR r,kk Move literal (12 bit) 2nd word
to FSRr 1st word

kk → FSRr

010k MOVLB k Move literal to BSR<3:0> kk → BSR

0Ekk MOVLW kk Move literal to WREG kk → WREG

0Dkk MULLW kk Multiply literal with WREG WREG * kk → PRODH:PRODL

0Ckk RETLW kk Return with literal in WREG kk → WREG

08kk SUBLW kk Subtract WREG from literal kk – WREG → WREG

0Akk XORLW kk Exclusive OR literal with WREG WREG .XOR. kk → WREG

TABLE A-12: PIC18 MEMORY OPERATIONS

Hex Mnemonic Description Function

0008 TBLRD* Table Read Prog Mem (TBLPTR) → TABLAT

0009 TBLRD*+ Table Read with post-increment Prog Mem (TBLPTR) → TABLAT
TBLPTR + 1 → TBLPTR

000A TBLRD*- Table Read with post-decrement Prog Mem (TBLPTR) → TABLAT
TBLPTR –1 → TBLPTR

000B TBLRD+* Table Read with pre-increment TBLPTR + 1 → TBLPTR
Prog Mem (TBLPTR) → TABLAT

000C TBLWT* Table Write TABLAT → Prog Mem(TBLPTR)

000D TBLWT*+ Table Write with post-increment TABLAT → Prog Mem(TBLPTR)
TBLPTR +1 → TBLPTR

000E TBLWT*- Table Write with post-decrement TABLAT → Prog Mem(TBLPTR)
TBLPTR – 1 → TBLPTR

000F TBLWT+* Table Write with pre-increment TBLPTR + 1 → TBLPTR
TABLAT → Prog Mem(TBLPTR)
© 2005 Microchip Technology Inc. DS33014J-page 247

Assembler/Linker/Librarian User’s Guide
A.8 PIC18 DEVICE EXTENDED INSTRUCTION SET

Some PIC18 devices have an extended mode of operation for use with the MPLAB C18
compiler. This mode will change the operation of some instructions listed in
Section A.7 “PIC18 Device Instruction Set” and add the instructions listed in this
section.

In general, you should not need to use the extended instruction set. However, if
needed, the extended mode is set using a special device configuration bit. For more on
extended mode, see the “MPLAB C18 C Compiler User’s Guide” (DS51288) and your
device data sheet.

Instruction opcode is shown in hex by making certain assumptions, either listed in the
key or as a footnote. For more information on the opcode bit values for each instruction,
as well as the number of cycles per instruction, Status bits affected and complete
instruction details, see the relevant device data sheet.

TABLE A-13: PIC18 EXTENDED INSTRUCTIONS

Hex Mnemonic Description Function

E8fk ADDFSR f,k Add literal to FSR FSR(f) + k → FSR(f)

E8Ck ADDULNK k Add literal to FSR2 and return FSR2 + k → FSR2, (TOS) → PC

0014 CALLW Call subroutine using WREG (PC + 2) → TOS, (W) → PCL,
(PCLATH) → PCH, (PCLATU) → PCU

EB’0’z
Ffff

MOVSF z’,f” Move z’ (source) to 1st word,
f” (destination)2nd word

((FSR2) + z’) → f”

EB’1’z
Fxzz

MOVSS z’,z” Move z’ (source) to 1st word,
z” (destination)2nd word

((FSR2) + z’) → ((FSR2) + z”)

EAkk PUSHL k Store literal at FSR2,
decrement FSR2

k → (FSR2),
FSR2-1 → FSR2

E9fk SUBFSR f,k Subtract literal from FSR FSR(f-k) → FSR(f)

E9Ck SUBULNK k Subtract literal from FSR2 and return FSR2-k → FSR2, (TOS) → PC
DS33014J-page 248 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Appendix B. Useful Tables
B.1 INTRODUCTION

Some useful tables are included for reference here. The tables are:

• ASCII Character Set
• Hexadecimal to Decimal Conversion

B.2 ASCII CHARACTER SET

L
ea

st
 S

ig
n

if
ic

an
t

N
ib

b
le

Most Significant Nibble

HEX 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
© 2005 Microchip Technology Inc. DS33014J-page 249

Assembler/Linker/Librarian User’s Guide
B.3 HEXADECIMAL TO DECIMAL CONVERSION

This appendix describes how to convert hexadecimal to decimal. For each HEX digit,
find the associated decimal value. Add the numbers together

For example, HEX A38F converts to 41871 as follows:

High Byte Low Byte

HEX 1000 Dec HEX 100 Dec HEX 10 Dec HEX 1 Dec

0 0 0 0 0 0 0 0

1 4096 1 256 1 16 1 1

2 8192 2 512 2 32 2 2

3 12288 3 768 3 48 3 3

4 16384 4 1024 4 64 4 4

5 20480 5 1280 5 80 5 5

6 24576 6 1536 6 96 6 6

7 28672 7 1792 7 112 7 7

8 32768 8 2048 8 128 8 8

9 36864 9 2304 9 144 9 9

A 40960 A 2560 A 160 A 10

B 45056 B 2816 B 176 B 11

C 49152 C 3072 C 192 C 12

D 53248 D 3328 D 208 D 13

E 57344 E 3584 E 224 E 14

F 61440 F 3840 F 240 F 15

HEX 1000’s Digit HEX 100’s Digit HEX 10’s Digit HEX 1’s Digit Result

40960 768 128 15 41871 Decimal
DS33014J-page 250 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN
USER’S GUIDE
Glossary
Absolute Section

A section with a fixed (absolute) address that cannot be changed by the linker.

Access Memory (PIC18 Only)

Special registers on PIC18 devices that allow access regardless of the setting of the
Bank Select Register (BSR).

Address

Value that identifies a location in memory.

Alphabetic Character

Alphabetic characters are those characters that are letters of the arabic alphabet
(a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0,1, …, 9).

ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

Application

A set of software and hardware that may be controlled by a PICmicro microcontroller.

Archive

A collection of relocatable object modules. It is created by assembling multiple source
files to object files, and then using the archiver to combine the object files into one
library file. A library can be linked with object modules and other libraries to create
executable code.

Archiver

A tool that creates and manipulates libraries.

ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.

Assembler

A language tool that translates assembly language source code into machine code.

Assembly Language

A programming language that describes binary machine code in a symbolic form.

Asynchronous Stimulus

Data generated to simulate external inputs to a simulator device.

Breakpoint, Hardware

An event whose execution will cause a halt.
© 2005 Microchip Technology Inc. DS33014J-page 251

Assembler/Linker/Librarian User’s Guide
Breakpoint, Software

An address where execution of the firmware will halt. Usually achieved by a special
break instruction.

Build

Compile and link all the source files for an application.

C

A general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators.

Calibration Memory

A special function register or registers used to hold values for calibration of a PICmicro
microcontroller on-board RC oscillator or other device peripherals.

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.

Compiler

A program that translates a source file written in a high-level language into machine
code.

Configuration Bits

Special-purpose bits programmed to set PICmicro microcontroller modes of operation.
A configuration bit may or may not be preprogrammed.

Control Directives

Directives in assembly language code that cause code to be included or omitted based
on the assembly-time value of a specified expression.

Cross Reference File

A file that references a table of symbols and a list of files that references the symbol.
If the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

Data Directives

Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of
General Purpose Registers (GPRs) and Special Function Registers (SFRs). Some
devices also have EEPROM data memory.

Device Programmer

A tool used to program electrically programmable semiconductor devices such as
microcontrollers.

Digital Signal Controller

A microcontroller device with digital signal processing capability, i.e., Microchip
dsPIC devices.

Directives

Statements in source code that provide control of the language tool’s operation.
DS33014J-page 252 © 2005 Microchip Technology Inc.

Glossary
Download

Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.

DSC

See Digital Signal Controller.

EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.

An object file of this format contains machine code. Debugging and other information
is specified in with DWARF. ELF/DWARF provide better debugging of optimized code
than COFF.

Emulation

The process of executing software loaded into emulation memory as if it were firmware
residing on a microcontroller device.

Emulation Memory

Program memory contained within the emulator.

Emulator

Hardware that performs emulation.

Emulator System

The MPLAB ICE 2000 and 4000 emulator systems include the pod, processor module,
device adapter, cables and MPLAB IDE software.

Environment – IDE

The particular layout of the desktop for application development.

Environment – MPLAB PM3

A folder containing files on how to program a device. This folder can be transferred to
a SD/MMC card.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that
can be erased usually by exposure to ultraviolet radiation.

Event

A description of a bus cycle which may include address, data, pass count, external
input, cycle type (fetch, R/W) and time stamp. Events are used to describe triggers,
breakpoints and interrupts.

Export

Send data out of the MPLAB IDE in a standardized format.

Extended Microcontroller Mode

In extended microcontroller mode, on-chip program memory as well as external mem-
ory is available. Execution automatically switches to external if the program memory
address is greater than the internal memory space of the PIC17 or PIC18 device.

External Label

A label that has external linkage.

External Linkage

A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.
© 2005 Microchip Technology Inc. DS33014J-page 253

Assembler/Linker/Librarian User’s Guide
External Symbol

A symbol for an identifier which has external linkage. This may be a reference or a
definition.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.

External Input Line

An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.

External RAM

Off-chip Read/Write memory.

File Registers

On-chip data memory, including General Purpose Registers (GPRs) and Special
Function Registers (SFRs).

Filter

Determine by selection what data is included/excluded in a trace display or data file.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle instruction.
Since the PICmicro microcontroller architecture is pipelined, it prefetches the next
instruction in the physical address space while it is executing the current instruction.
However, if the current instruction changes the program counter, this prefetched
instruction is explicitly ignored, causing a forced NOP cycle.

GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

Halt

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

Hex Code

Executable instructions stored in a hexadecimal format code. Hex code is contained in
a hex file.

Hex File

An ASCII file containing hexadecimal addresses and values (hex code) suitable for
programming a device.

High Level Language

A language for writing programs that is further removed from the processor than
assembly.

ICD

In-Circuit Debugger. MPLAB ICD 2 is Microchip’s in-circuit debugger.

ICE

In-Circuit Emulator. MPLAB ICE 2000 and 4000 are Microchip’s in-circuit emulators.
DS33014J-page 254 © 2005 Microchip Technology Inc.

Glossary
IDE

Integrated Development Environment. MPLAB IDE is Microchip’s integrated
development environment.

Import

Bring data into the MPLAB IDE from an outside source, such as from a hex file.

Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instructions

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from outside the
module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications.

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed.

Interrupt Handler

A routine that processes special code when an interrupt occurs.

Interrupt Request

An event which causes the processor to temporarily suspend normal instruction exe-
cution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine

User-generated code that is entered when an interrupt occurs. The location of the code
in program memory will usually depend on the type of interrupt that has occurred.

IRQ

See Interrupt Request.

ISO

See International Organization for Standardization.

ISR

See Interrupt Service Routine.

Librarian

See Archiver.

Library

See Archive.

Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.
© 2005 Microchip Technology Inc. DS33014J-page 255

Assembler/Linker/Librarian User’s Guide
Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for each C
source statement, assembly instruction, assembler directive, or macro encountered in
a source file.

Local Label

A local label is one that is defined inside a macro with the LOCAL directive. These
labels are particular to a given instance of a macro’s instantiation. In other words, the
symbols and labels that are declared as local are no longer accessible after the ENDM
macro is encountered.

Logic Probes

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.

Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.

Macro

Macro instruction. An instruction that represents a sequence of instructions in
abbreviated form.

Macro Directives

Directives that control the execution and data allocation within macro body definitions.

Make Project

A command that rebuilds an application, re-compiling only those source files that have
changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also uC.

Message

Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.

Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and
timers.

Microcontroller Mode

One of the possible program memory configurations of PIC17 and PIC18 microcontrol-
lers. In microcontroller mode, only internal execution is allowed. Thus, only the on-chip
program memory is available in microcontroller mode.
DS33014J-page 256 © 2005 Microchip Technology Inc.

Glossary
Microprocessor Mode

One of the possible program memory configurations of PIC17 and PIC18 microcontrol-
lers. In microprocessor mode, the on-chip program memory is not used. The entire
program memory is mapped externally.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
Opcodes.

MPASM Assembler

Microchip Technology’s relocatable macro assembler for PICmicro microcontroller
devices, KeeLoq devices and Microchip memory devices.

MPLAB ASM30

Microchip’s relocatable macro assembler for dsPIC30F digital signal controller devices.

MPLAB C1X

Refers to both the MPLAB C17 and MPLAB C18 C compilers from Microchip.
MPLAB C17 is the C compiler for PIC17 devices and MPLAB C18 is the C compiler for
PIC18 devices.

MPLAB C30

Microchip’s C compiler for dsPIC30F digital signal controller devices.

MPLAB ICD 2

Microchip’s in-circuit debugger that works with MPLAB IDE. The ICD supports Flash
devices with built-in debug circuitry. The main component of each ICD is the module.
A complete system consists of a module, header, demo board, cables, and MPLAB IDE
Software.

MPLAB ICE 2000/4000

Microchip’s in-circuit emulators that works with MPLAB IDE. MPLAB ICE 2000 sup-
ports PICmicro MCUs. MPLAB ICE 4000 supports PIC18F MCUs and dsPIC30F
DSCs. The main component of each ICE is the pod. A complete system consists of a
pod, processor module, cables, and MPLAB IDE Software.

MPLAB IDE

Microchip’s Integrated Development Environment.

MPLAB LIB30

MPLAB LIB30 archiver/librarian is an object librarian for use with COFF object modules
created using either MPLAB ASM30 or MPLAB C30 C compiler.

MPLAB LINK30

MPLAB LINK30 is an object linker for the Microchip MPLAB ASM30 assembler and the
Microchip MPLAB C30 C compiler.

MPLAB PM3

A device programmer from Microchip. Programs PIC18 microcontrollers and
dsPIC digital signal controllers. Can be used with MPLAB IDE or stand-alone. Will
obsolete PRO MATE II.

MPLAB SIM

Microchip’s simulator that works with MPLAB IDE in support of PICmicro MCU and
dsPIC DSC devices.

MPLIB Object Librarian

MPLIB librarian is an object librarian for use with COFF object modules created using
either MPASM assembler (mpasm or mpasmwin v2.0) or MPLAB C1X C compilers.
© 2005 Microchip Technology Inc. DS33014J-page 257

Assembler/Linker/Librarian User’s Guide
MPLINK Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the
Microchip MPLAB C17 or C18 C compilers. MPLINK linker also may be used with the
Microchip MPLIB librarian. MPLINK linker is designed to be used with MPLAB IDE,
though it does not have to be.

MRU

Most Recently Used. Refers to files and windows available to be selected from
MPLAB IDE main pull down menus.

Nesting Depth

The maximum level to which macros can include other macros.

Node

MPLAB IDE project component.

Non Real-Time

Refers to the processor at a breakpoint or executing single step instructions or
MPLAB IDE being run in simulator mode.

Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the
program counter.

Object Code

The machine code generated by an assembler or compiler.

Object File

A file containing machine code and possibly debug information. It may be immediately
executable or it may be relocatable, requiring linking with other object files, e.g.,
libraries, to produce a complete executable program.

Object File Directives

Directives that are used only when creating an object file.

Off-Chip Memory

Off-chip memory refers to the memory selection option for the PIC17 or PIC18 device
where memory may reside on the target board, or where all program memory may be
supplied by the Emulator.

Opcodes

Operational Codes. See Mnemonics.

Operators

Symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

OTP

One Time Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are
erasable.
DS33014J-page 258 © 2005 Microchip Technology Inc.

Glossary
Pass Counter

A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, and to any
sequential event in the Complex Trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any IBM or compatible personal computer running a supported Windows operating
system.

PICmicro MCUs

PICmicro microcontrollers (MCUs) refers to all Microchip microcontroller families.

PICSTART Plus

A developmental device programmer from Microchip. Programs 8-, 14-, 28-, and 40-pin
PICmicro microcontrollers. Must be used with MPLAB IDE Software.

Pod, Emulator

The external emulator box that contains emulation memory, trace memory, event and
cycle timers, and trace/breakpoint logic.

Power-on-Reset Emulation

A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.

PRO MATE II

A device programmer from Microchip. Programs most PICmicro microcontrollers as
well as most memory and Keeloq devices. Can be used with MPLAB IDE or
stand-alone.

Profile

For MPLAB SIM simulator, a summary listing of executed stimulus by register.

Program Counter

The location that contains the address of the instruction that is currently executing.

Program Memory

The memory area in a device where instructions are stored. Also, the memory in the
emulator or simulator containing the downloaded target application firmware.

Project

A set of source files and instructions to build the object and executable code for an
application.

Prototype System

A term referring to a user's target application, or target board.

PWM Signals

Pulse Width Modulation Signals. Certain PICmicro MCU devices have a PWM
peripheral.

Qualifier

An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

Radix

The number base, hex, or decimal, used in specifying an address.
© 2005 Microchip Technology Inc. DS33014J-page 259

Assembler/Linker/Librarian User’s Guide
RAM

Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.

Raw Data

The binary representation of code or data associated with a section.

Real-Time

When released from the halt state in the emulator or MPLAB ICD mode, the processor
runs in real-time mode and behaves exactly as the normal chip would behave. In
real-time mode, the real-time trace buffer of MPLAB ICE is enabled and constantly cap-
tures all selected cycles, and all break logic is enabled. In the emulator or MPLAB ICD,
the processor executes in real-time until a valid breakpoint causes a halt, or until the
user halts the emulator. In the simulator real-time simply means execution of the
microcontroller instructions as fast as they can be simulated by the host CPU.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.

ROM

Read Only Memory (Program Memory). Memory that cannot be modified.

Run

The command that releases the emulator from halt, allowing it to run the application
code and change or respond to I/O in real time.

Scenario

For MPLAB SIM simulator, a particular setup for stimulus control.

SFR

See Special Function Registers.

Shell

The MPASM assembler shell is a prompted input interface to the macro assembler.
There are two MPASM assembler shells: one for the DOS version and one for the
Windows version.

Simulator

A software program that models the operation of devices.

Single Step

This command steps though code, one instruction at a time. After each instruction,
MPLAB IDE updates register windows, watch variables, and status displays so you can
analyze and debug instruction execution. You can also single step C compiler source
code, but instead of executing single instructions, MPLAB IDE will execute all assembly
level instructions generated by the line of the high level C statement.

Skew

The information associated with the execution of an instruction appears on the proces-
sor bus at different times. For example, the executed Opcodes appears on the bus as
a fetch during the execution of the previous instruction, the source data address and
value and the destination data address appear when the Opcodes is actually executed,
and the destination data value appears when the next instruction is executed. The trace
buffer captures the information that is on the bus at one instance. Therefore, one trace
buffer entry will contain execution information for three instructions. The number of cap-
tured cycles from one piece of information to another for a single instruction execution
is referred to as the skew.
DS33014J-page 260 © 2005 Microchip Technology Inc.

Glossary
Skid

When a hardware breakpoint is used to halt the processor, one or more additional
instructions may be executed before the processor halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.

Source Code

The form in which a computer program is written by the programmer. Source code is
written in some formal programming language which can be translated into or machine
code or executed by an interpreter.

Source File

An ASCII text file containing source code.

Special Function Registers

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.

Stack, Hardware

Locations in PICmicro microcontroller where the return address is stored when a
function call is made.

Stack, Software

Memory used by an application for storing return addresses, function parameters and
local variables. This memory is typically managed by the compiler when developing
code in a high-level language.

Static RAM or SRAM

Static Random Access Memory. Program memory you can Read/Write on the target
board that does not need refreshing frequently.

Status Bar

The Status Bar is located on the bottom of the MPLAB IDE window and indicates such
current information as cursor position, development mode and device, and active tool
bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.

Step Over

Step Over allows you to step over subroutines. This command executes the code in the
subroutine and then stops execution at the return address to the subroutine.

When stepping over a CALL instruction, the next breakpoint will be set at the instruction
after the CALL. If for some reason the subroutine gets into an endless loop or does not
return properly, the next breakpoint will never be reached. Select Halt to regain control
of program execution.

Step Out

Step Out allows you to step out of a subroutine which you are currently stepping
through. This command executes the rest of the code in the subroutine and then stops
execution at the return address to the subroutine.

Stimulus

Input to the simulator, i.e., data generated to exercise the response of simulation to
external signals. Often the data is put into the form of a list of actions in a text file.
Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.
© 2005 Microchip Technology Inc. DS33014J-page 261

Assembler/Linker/Librarian User’s Guide
Symbol

A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB IDE refer
mainly to variable names, function names and assembly labels. The value of a symbol
after linking is its value in memory.

System Window Control

The system window control is located in the upper left corner of windows and some
dialogs. Clicking on this control usually pops up a menu that has the items “Minimize,”
“Maximize,” and “Close.”

Target

Refers to user hardware.

Target Application

Software residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board.

Template

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB IDE functions.

Trace

An emulator or simulator function that logs program execution. The emulator logs pro-
gram execution into its trace buffer which is uploaded to MPLAB IDE’s trace window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.

Warning

An alert that is provided to warn you of a situation that would cause physical damage
to a device, software file, or equipment.

Watch Variable

A variable that you may monitor during a debugging session in a watch window.
DS33014J-page 262 © 2005 Microchip Technology Inc.

Glossary
Watch Window

Watch windows contain a list of watch variables that are updated at each breakpoint.

Watchdog Timer

A timer on a PICmicro microcontroller that resets the processor after a selectable
length of time. The WDT is enabled or disabled and set up using configuration bits.

WDT

See Watchdog Timer.

Workbook

For MPLAB SIM stimulator, a setup for generation of SCL stimulus.
© 2005 Microchip Technology Inc. DS33014J-page 263

Assembler/Linker/Librarian User’s Guide
NOTES:
DS33014J-page 264 © 2005 Microchip Technology Inc.

ASSEMBLER/LINKER/LIBRARIAN

USER’S GUIDE

Index
Symbols
#define ... 68
#include...92, 143
#undefine ... 117
$... 43
.asm ... 12
.c .. 12
.hex .. 12
.lib .. 12
.lkr ...12, 174
.o .. 12
/o .. 150
__badram... 48
__badrom... 49
__config ..58, 148
__fuses .. 58
__idlocs...87, 148
__maxram .. 97
__maxrom .. 98

A
Absolute Code, Generating...................................... 22
Access Section

Overlayed ... 48
access_ovr ... 48
ACCESSBANK ...183, 185
Accessing Labels From Other Modules 148
Allocation

Absolute.. 188
Relocatable... 188
Stack... 188

AND, logical ... 43
Arithmatic Operators .. 42
ASCII Character Set .. 249
AUTOEXEC.BAT ... 37

B
badram... 48
badrom... 49
Bank Selecting ... 52
Bank Selecting, Indirect ... 50
Banking ...130, 149
bankisel .. 50
banksel..52, 149
Bit Assignments ... 129
Blank Listing Lines ... 110
Block of Constants ..54, 72

C
Caveats, Linker Script .. 183
cblock ... 54
Code

Absolute144, 147, 149, 150
Relocatable144, 147, 149
Relocatable, Defining Module 148
Relocatable, Library Routine........................... 151
Relocatable, Referencing Module................... 148

code ..56, 144, 148
Code Section.. 56
Code Section, Packed.. 57
Code Sections.. 129
code_pack.. 57
CODEPAGE... 184, 185
COFF Object Module File 174
Command Line Interface

Assembler ... 35
Librarian .. 232
Linker .. 179

Command Line Options, Librarian
/c ... 232
/d ... 232
/q ... 232
/r.. 232
/t .. 232
/x ... 232

Command Shell Interface... 33
Common Problems

Linker .. 223
Conditional Assembly Directives.............................. 46

else ... 71
endif .. 72
endw ... 73
fi .. 72
if .. 88
ifdef ... 90
ifndef ... 91
while.. 119

config.. 59
Configuration Bits..58, 59, 148
constant.. 60
Constant Compare ... 156
Constants

Block Of .. 54, 72
Declare.. 60
Define.. 74
© 2005 Microchip Technology Inc. DS33014J-page 265

Index
Control Directives... 46
#define .. 68
#include .. 92
#undefine .. 117
constant .. 60
end.. 71
equ.. 74
org... 100
processor .. 106
radix .. 106
set ... 109
variable ... 118

Create Numeric and Text Data 62
Customer Notification Service.................................... 6
Customer Support .. 7

D
da ... 61
Data

Byte... 65
EEPROM Byte .. 67
Word ... 70

data ...39, 62
Data Directives... 46

__badram.. 48
__badrom.. 49
__config .. 58
__fuses ... 58
__idlocs... 87
__maxram... 97
__maxrom... 98
cblock.. 54
config .. 59
da.. 61
data... 62
db.. 65
de.. 67
dt ... 70
dw ... 70
endc .. 72
fill .. 82
res... 107

Data Section
Access Uninitialized.. 112
Initialized... 85
Initialized Access .. 86
Overlayed Uninitialized 114
Shared Uninitialized.. 116
Uninitialized .. 111

Data, Initialized .. 190
DATABANK...183, 185
db ... 65
de ... 67
Decrement ... 43
define ... 68
Delete a Substitution Label 117
Directives, Assembler .. 45
Directives, Linker ... 182

Documentation
Conventions .. 4
Layout ... 1

dt .. 70
dw... 39, 70

E
EEPROM Data Byte... 67
Eight-by-Eight Multiply ... 155
else... 71
end ... 71
endc ... 72
endif ... 72
endm .. 73
endw... 73
Environment Variables ... 192
equ ... 74
error.. 74
Error File .. 28, 157
errorlevel .. 76
Errors

Assembler ... 157
COFF .. 221
COFF to COD Converter 222
Librarian Parse.. 233
Library File .. 220
Linker .. 215
Linker Parse.. 213

Escape Sequences .. 40
Examples, Application

#define ...69, 132, 136
#include... 124
#undefine .. 69, 132
bankisel... 51, 52
banksel...53, 54, 125, 134
cblock.. 55
code .. 56, 125
constant .. 119, 132
da .. 61
data ... 63, 64
db .. 65, 66
de .. 68
else ... 89
end .. 124
endc .. 55
endif .. 89
endm ... 96, 134
endw ... 120
equ .. 109, 125
error .. 75
errorlevel ... 76
exitm ... 78
extern .. 81
fill... 83
global ...81, 136, 138
idata .. 85
if .. 89
ifdef ... 90, 91
list.. 107, 136
local... 95
macro .. 96, 134
© 2005 Microchip Technology Inc. DS33014J-page 266

Index
messg ... 99
org..101, 102
pagesel ..104, 125
radix .. 107
res.. 108, 125, 136, 138
set ..109, 132
udata.. 112, 125, 136, 138
udata_acs ... 113
udata_ovr .. 115
udata_shr .. 116
variable ..119, 132
while.. 120

Examples, Simple
#define .. 69
#include .. 93
#undefine .. 118
__badram.. 49
__badrom.. 50
__config .. 59
__idlocs... 87
__maxram... 49
__maxrom... 50
bankisel... 50
banksel ... 52
cblock.. 55
code .. 56
code_pack .. 57
config .. 60
data... 63
db.. 65
de.. 67
dt ... 70
dw ... 71
else ... 71
end.. 72
endm... 73
equ.. 74
error .. 75
errorlevel ... 76
exitm ... 78
extern.. 80
fill .. 82
global .. 84
idata ...85, 87
if .. 89
ifdef ... 90
ifndef ... 91
list ... 94
local .. 94
macro.. 96
messg ... 99
org... 101
pagesel ..104, 105
processor .. 106
radix .. 106
res... 108
set ... 109
space ...48, 110
subtitle .. 111
title .. 111

udata ... 112
udata_acs ... 113
udata_ovr .. 114
udata_shr .. 116
variable ... 118
while.. 120

Executable Files... 12
Execute If Symbol Defined....................................... 90
Execute If Symbol Not Defined 91
exitm... 78
expand ... 80
Export a Label .. 84
Extended Microcontroller Mode 195
extern ... 80, 148
External Label .. 80

F
fi ... 72
File

Error .. 157
Listing.. 47

FILES ... 182
fill .. 82
Final Frontier .. 110

G
global.. 84

H
Header Files..92, 128, 143
Hex Files ...12, 28, 174

Format... 34
Hexadecimal to Decimal Conversion 250
high .. 43, 145

I
ID Locations ... 87, 148
idata ... 85, 147
idata_acs.. 86
idlocs .. 87
if ... 88

else ... 71
end .. 72

ifdef .. 90
ifndef .. 91
INCLUDE ... 183
include.. 92
Include Additional Source File.................................. 92
Include File... 26
Increment ... 43
Initialized Data.. 190
Input/Output Files

Assembler ... 24
Librarian .. 229
Linker .. 173

Instruction Operands.. 144
Instruction Sets .. 237

12-Bit Core.. 239, 242
12-Bit/14-Bit Cores.. 242
14-Bit Core.. 240
PIC18 Device .. 243
© 2005 Microchip Technology Inc. DS33014J-page 267

Index
Internet Address, Microchip 6
Interrupt Handling

PIC16 Example.................... 77, 83, 101, 126, 131
PIC18 Example..83, 102

L
LIBPATH .. 182
Library File ..12, 174, 229
Limitations

Assembler ... 168
Linker Processing .. 187
Linker Scripts ..12, 174, 181
Linker Scripts, Standard... 181
list... 93
Listing Directives.. 47

error .. 74
errorlevel ... 76
list ... 93
messg ... 98
nolist ... 100
page.. 103
space .. 110
subtitle .. 110
title .. 111

Listing File ...26, 47, 174
LKRPATH .. 182
local.. 94
Logical Sections... 185
low...43, 145

M
Macro

Code Examples .. 155
End ... 73
Exit .. 78
Expand.. 80
No Expansion ... 100
Text Substitution ... 154
Usage ... 154

macro ... 96
Macro Directives .. 47

Defined ... 154
endm... 73
exitm ... 78
expand .. 80
local .. 94
macro.. 96
noexpand .. 100

Macro Language .. 153
Macro Syntax ... 153
Map File ... 176
Maximum RAM Location.. 97
Maximum ROM Location.. 98
maxram .. 97
maxrom .. 98
MCC_INCLUDE ... 192
Memory

Fill ... 82
Reserve .. 107

Memory Regions.. 183
Message .. 98

Messages
Assembler ... 166

messg... 98
MPASM Assembler Overview 21
mpasm.exe... 21
mpasmwin.exe ... 21
MPLAB C18 ... 181
MPLIB Librarian Overview 227
MPLIB Object Librarian .. 12
MPLINK Linker Overview 171
MPLINK Object Linker.. 12

N
noexpand ... 100
nolist ... 100
NOT, logical ... 43

O
Object File ...30, 34, 174, 229
Object File Directives ... 47

access_ovr.. 48
bankisel... 50
banksel.. 52
code .. 56
code_pack... 57
extern .. 80
global .. 84
idata .. 85
idata_acs... 86
pagesel ... 103
pageselw... 105
udata ... 111
udata_acs ... 112
udata_ovr .. 114
udata_shr .. 116

Object Files, Precompiled .. 12
Object Module, Generating 150
Operators, Arithmatic ... 42
OR, logical.. 43
org .. 100

P
page ... 103
Page Eject.. 103
Page Selection ... 103
Page Selection - WREG... 105
pagesel... 103, 149
pageselw .. 105
Paging .. 129, 149
PATH.. 192
Processing, Linker.. 187
processor ... 106
Processor, Set...93, 106, 125
Program Memory ... 144
Projects .. 11
PROTECTED ... 183
© 2005 Microchip Technology Inc. DS33014J-page 268

Index
R
Radix.. 41
radix ... 106
Radix, Set ... 93, 106, 107, 125
RAM Allocation .. 147
RAM Memory Regions, Defining............................ 183
Reading, Recommended ... 5
Register Assignments .. 129
relocatable ... 30
Relocatable Code, Generating................................. 23
Relocatable Objects... 143
res .. 107
Reserved Section Names, Assembler 41
Reserved Words, Assembler 41
ROM Memory Regions, Defining 184

S
Sample Applications, Linker................................... 191
Scripts, Linker .. 181
Search Order, Include Files 92
SECTION ..183, 185
set .. 109
Set Program Origin .. 100
SHAREBANK..183, 185
Simple ...49, 50
Source Code .. 12
Source Code File, Assembly.................................... 24
space ... 110
Stack .. 186
STACK SIZE .. 186
Standard Linker Scripts.. 181
Store Strings in Program Memory............................ 61
subtitle.. 110
Symbol and Debug File.....................................30, 174
Symbol Constant.. 60
Symbols, In Expressions.. 42

T
Table, Define.. 70
Text Strings.. 39
Text Substitution Label .. 68
title ... 111
Troubleshooting ... 157

U
udata ...111, 147
udata_acs ...112, 147
udata_ovr ..114, 147
udata_shr ..116, 147
undefine ... 117
Unimplemented RAM... 48
Unimplemented ROM... 49
upper...43, 145

V
Variable

Declare ... 118
Define ... 109
Local ... 94

variable .. 118

W
Warnings

Assembler ... 163
COFF to COD Converter 222
Linker .. 220

Watch Window ... 133
Web Site, Microchip ... 6
while ... 119
White Space... 24
Windows Shell Interface... 32
© 2005 Microchip Technology Inc. DS33014J-page 269

DS33014J-page 270 © 2005 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 604-646-8870
Fax: 604-646-5086

Philippines - Manila
Tel: 011-632-634-9065
Fax: 011-632-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-352-30-52
Fax: 34-91-352-11-47

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

07/01/05

	Preface
	PICmicro Language Tools and MPLAB IDE
	Part 1 – MPASM Assembler
	Chapter 1. MPASM Assembler Overview
	1.1 Introduction
	1.2 MPASM Assembler Defined
	1.3 How MPASM Assembler Helps You
	1.4 Assembler Migration Path
	1.5 Assembler Compatibility Issues
	1.6 Assembler Operation
	1.7 Assembler Input/Output Files

	Chapter 2. Assembler Interfaces
	2.1 Introduction
	2.2 MPLAB IDE Interface
	2.3 Windows Interface
	2.4 Command Shell Interface
	2.5 Command Line Interface
	2.6 Troubleshooting

	Chapter 3. Expression Syntax and Operation
	3.1 Introduction
	3.2 Text Strings
	3.3 Reserved Words and Section Names
	3.4 Numeric Constants and Radix
	3.5 Arithmetic Operators and Precedence

	Chapter 4. Directives
	4.1 Introduction
	4.2 Directives by Type
	4.3 access_ovr – Begin an Object File Overlay Section in Access RAM (PIC18 MCUs)
	4.4 __badram – Identify Unimplemented RAM
	4.5 __badrom – Identify Unimplemented ROM
	4.6 bankisel – Generate Indirect Bank Selecting Code (PIC12/16 MCUs)
	4.7 banksel – Generate Bank Selecting Code
	4.8 cblock – Define a Block of Constants
	4.9 code – Begin an Object File Code Section
	4.10 code_pack – Begin an Object File Packed Code Section (PIC18 MCUs)
	4.11 __config – Set Processor Configuration Bits
	4.12 config – Set Processor Configuration Bits (PIC18 MCUs)
	4.13 constant – Declare Symbol Constant
	4.14 da – Store Strings in Program Memory (PIC12/16 MCUs)
	4.15 data – Create Numeric and Text Data
	4.16 db – Declare Data of One Byte
	4.17 de – Declare EEPROM Data Byte
	4.18 #define – Define a Text Substitution Label
	4.19 dt – Define Table (PIC12/16 MCUs)
	4.20 dw – Declare Data of One Word
	4.21 else – Begin Alternative Assembly Block to IF Conditional
	4.22 end – End Program Block
	4.23 endc – End an Automatic Constant Block
	4.24 endif – End Conditional Assembly Block
	4.25 endm – End a Macro Definition
	4.26 endw – End a While Loop
	4.27 equ – Define an Assembler Constant
	4.28 error – Issue an Error Message
	4.29 errorlevel – Set Message Level
	4.30 exitm – Exit from a Macro
	4.31 expand – Expand Macro Listing
	4.32 extern – Declare an Externally Defined Label
	4.33 fill – Specify Program Memory Fill Value
	4.34 global – Export a Label
	4.35 idata – Begin an Object File Initialized Data Section
	4.36 idata_acs – Begin an Object File Initialized Data Section in Access RAM (PIC18 MCUs)
	4.37 __idlocs – Set Processor ID Locations
	4.38 if – Begin Conditionally Assembled Code Block
	4.39 ifdef – Execute If Symbol has Been Defined
	4.40 ifndef – Execute If Symbol has not Been Defined
	4.41 #include – Include Additional Source File
	4.42 list – Listing Options
	4.43 local – Declare Local Macro Variable
	4.44 macro – Declare Macro Definition
	4.45 __maxram – Define Maximum RAM Location
	4.46 __maxrom – Define Maximum ROM Location
	4.47 messg – Create User Defined Message
	4.48 noexpand – Turn off Macro Expansion
	4.49 nolist – Turn off Listing Output
	4.50 org – Set Program Origin
	4.51 page – Insert Listing Page Eject
	4.52 pagesel – Generate Page Selecting Code (PIC10/12/16 MCUs)
	4.53 pageselw – Generate Page Selecting Code Using WREG Commands (PIC10/12/16 MCUs)
	4.54 processor – Set Processor Type
	4.55 radix – Specify Default Radix
	4.56 res – Reserve Memory
	4.57 set – Define an Assembler Variable
	4.58 space – Insert Blank Listing Lines
	4.59 subtitle – Specify Program Subtitle
	4.60 title – Specify Program Title
	4.61 udata – Begin an Object File Uninitialized Data Section
	4.62 udata_acs – Begin an Object File Access Uninitialized Data Section (PIC18 MCUs)
	4.63 udata_ovr – Begin an Object File Overlaid Uninitialized Data Section
	4.64 udata_shr – Begin an Object File Shared Uninitialized Data Section (PIC12/16 MCUs)
	4.65 #undefine – Delete a Substitution Label
	4.66 variable – Declare Symbol Variable
	4.67 while – Perform Loop While Condition is True

	Chapter 5. Assembler Examples, Tips and Tricks
	5.1 Introduction
	5.2 Example of Displaying Count on Ports
	5.3 Example of PortB Toggle and Delay Routines
	5.4 Example of Calculations with Variables and Constants
	5.5 Example of a 32-Bit Delay Routine
	5.6 Example of SPI™ Emulated in Firmware
	5.7 Example of Hexadecimal to ASCII Conversion
	5.8 Other Sources of Examples
	5.9 Tips and Tricks

	Chapter 6. Relocatable Objects
	6.1 Introduction
	6.2 Header Files
	6.3 Program Memory
	6.4 Low, High and Upper Operands
	6.5 RAM Allocation
	6.6 Configuration Bits and ID Locations
	6.7 Accessing Labels From Other Modules
	6.8 Paging and Banking Issues
	6.9 Generating the Object Module
	6.10 Code Example

	Chapter 7. Macro Language
	7.1 Introduction
	7.2 Macro Syntax
	7.3 Macro Directives Defined
	7.4 Macro Definition
	7.5 Macro Invocation
	7.6 Macro Code Examples

	Chapter 8. Errors, Warnings, Messages, and Limitations
	8.1 Introduction
	8.2 Assembler Errors
	8.3 Assembler Warnings
	8.4 Assembler Messages
	8.5 Assembler Limitations

	Part 2 – MPLINK Object Linker
	Chapter 9. MPLINK Linker Overview
	9.1 Introduction
	9.2 MPLINK Linker Defined
	9.3 How MPLINK Linker Works
	9.4 How MPLINK Linker Helps You
	9.5 Linker Platforms Supported
	9.6 Linker Operation
	9.7 Linker Input/Output Files

	Chapter 10. Linker Interfaces
	10.1 Introduction
	10.2 MPLAB IDE Interface
	10.3 Command Line Interface
	10.4 Command Line Example

	Chapter 11. Linker Scripts
	11.1 Introduction
	11.2 Standard Linker Scripts
	11.3 Linker Script Command Line Information
	11.4 Linker Script Caveats
	11.5 Memory Region Definition
	11.6 Logical Section Definition
	11.7 STACK Definition

	Chapter 12. Linker Processing
	12.1 Introduction
	12.2 Linker Processing Overview
	12.3 Linker Allocation Algorithm
	12.4 Relocation Example
	12.5 Initialized Data
	12.6 Reserved Section Names

	Chapter 13. Sample Applications
	13.1 Introduction
	13.2 How to Build the Sample Applications
	13.3 Sample Application 1 – Modifying the Linker Script
	13.4 Sample Application 2 – Placing Code and Setting CONFIG Bits
	13.5 Sample Application 3 – Using a Boot Loader
	13.6 Sample Application 4 – Configuring External Memory

	Chapter 14. Errors, Warnings and Common Problems
	14.1 Introduction
	14.2 Linker Parse Errors
	14.3 Linker Errors
	14.4 Linker Warnings
	14.5 Library File Errors
	14.6 COFF File Errors
	14.7 COFF To COD Conversion Errors
	14.8 COFF To COD Converter Warnings
	14.9 COD File Errors
	14.10 Hex File Errors
	14.11 Common Problems

	Part 3 – MPLIB Object Librarian
	Chapter 15. MPLIB Librarian Overview
	15.1 Introduction
	15.2 What is MPLIB Librarian
	15.3 How MPLIB Librarian Works
	15.4 How MPLIB Librarian Helps You
	15.5 Librarian Operation
	15.6 Librarian Input/Output Files

	Chapter 16. Librarian Interfaces
	16.1 Introduction
	16.2 MPLAB IDE Interface
	16.3 Command Line Options
	16.4 Command Line Examples and Tips

	Chapter 17. Errors
	17.1 Introduction
	17.2 Librarian Parse Errors
	17.3 Library File Errors
	17.4 COFF File Errors

	Part 4 – Appendices
	Appendix A. Instruction Sets
	A.1 Introduction
	A.2 Key to 12/14-Bit Instruction Width Instruction Sets
	A.3 12-Bit Instruction Width Instruction Set
	A.4 14-Bit Instruction Width Instruction Set
	A.5 12-Bit/14-Bit Instruction Width Pseudo-Instructions
	A.6 Key to PIC18 Device Instruction Set
	A.7 PIC18 Device Instruction Set
	A.8 PIC18 Device Extended Instruction Set

	Appendix B. Useful Tables
	B.1 Introduction
	B.2 ASCII Character Set
	B.3 Hexadecimal to Decimal Conversion

	Glossary
	Index
	Worldwide Sales and Service

