

<u>AN589</u>

A PC-Based Development Programmer for the PIC16C84

Author: Robert Spur Analog Design Specialist, Inc.

INTRODUCTION

This application note describes the construction of a low cost serial programmer which uses a PC with a parallel (Centronix printer) port to control a PIC16C84. This programmer has the capability of programming a PIC16C84 microcontroller, and reading back internal data without removing the device from the target circuit.

This feature is very useful in applications where changes in program code or program constants are necessary to compensate for other system features. For example, an embedded control system may have to compensate for variances in a mechanical actuator's performance or loading. The basic program can be programmed and tested during design phase. The final program and control constants can be easily added later in the production phase without removing the microcontroller from the circuit.

Automatic software and performance upgrades can also be implemented in-system. Upon receiving new system software via disk or modem, a control processor with the included programming code could perform in-circuit reprogramming of other microcontrollers in the system.

This programmer can load program code, part configuration, and EEPROM data into the PIC16C84. In read back mode, it can verify all data entries.

PROGRAMMING DESCRIPTION

The PIC16C84 microcontroller is placed into programming mode by forcing a low logic level on RB7 (pin 13) and RB6 (pin 12) while MCLR (pin 4) is first brought low to reset the part, and then brought to the program/verify voltage of 12 to 14V. The MCLR pin remains at the program/verify voltage for the remainder of the programming or verification. After entering programming mode, RB7 is used to serially enter programming modes and data into the part. A high to low transition on RB6, the clock input, qualifies each bit of the data applied on RB7. Please refer to the PIC16C84 Programming Specification (DS30189) for details on the figures. The serial command-data format is specified in Figure 1.2.1.3 of the Microchip PIC16C84 Programming Specification (DS30189). The first 6 bits form the command field, and the last 16 bits form the data field. Notice that the data field is composed of one zero starting bit, 14 actual data bits, and one zero stop bit. The increment address command, shown in Figure 1.2.1.5 (PIC16C84 Programming Specification, DS30189), is comprised of only the command field. Table 1.2.1.1 (see DS30189) summarizes the available commands and command codes for serial programming mode.

Read mode is similar to programming mode with the exception that the data direction of RB7 is reversed after receiving the 6-bit command to allow the requested data to be returned to the programmer. Figure 1.2.1.4 (see DS30189) shows this sequence which starts by shifting the 6-bit command into the part. After the read command is issued, the programmer tri-states its buffer to allow the part to serially shift its internal data back to the programmer. The rising edge of RB6, (the clock input), controls the data flow by sequentially shifting previously programmed or data bits from the part. The programmer qualifies this data on the falling edge of RB6. Notice that 16 clock cycles are necessary to shift out 14 data bits.

Accidental in-circuit reprogramming is prevented during normal operation by the MCLR voltage which should never exceed the maximum circuit supply voltage of 6 VDC and the logic levels of port bits RB7 and RB6.

After program/verification the $\overline{\text{MCLR}}$ pin is brought low to reset the target microcontroller and then electrically released. The target circuit is then free to activate the $\overline{\text{MCLR}}$ signal. In the event $\overline{\text{MCLR}}$ is not forced by the target circuit, R4 (a 2 k Ω pull-up resistor in the programmer) provides a high logic level on the target microcontroller which enables execution of its program independent of the programmer connection. Provisions should be made to prevent the target circuit from resetting the target microcontroller with $\overline{\text{MCLR}}$ or affecting the RB7 and RB6 pins during the programming process. In most cases this can be done without jumpers.

DETAILED CIRCUIT DESCRIPTION

A logic high on PC parallel interface latch bit D4 turns on Q3 causing the MCLR pin to go low which places the target part in reset mode. The reset condition is then removed and the program/verify voltage is applied by placing a logic high on D3 and a logic low on D4 which turns off Q3 and turns on Q2 and Q1. Circuit protection of Q1 and Q3 is obtained from connecting the emitter of Q2 to latch bit D4 which prevents a simultaneous reset and program/verify voltage mode. Q2, a 2N3904, has a reverse emitter base breakdown voltage of 6V which will not be exceeded when 5V logic is used on the parallel interface.

Resistors R1, R2, R3, and diode D1 provide a logic level interface to the analog circuitry. R4 provides a $\overline{\text{MCLR}}$ (master clear) pull-up function during target circuit run mode. The programming voltage is supplied and adjusted by an external lab supply. This supply should have a current limit in the 100 mA range. 5V for U2 (LS244) is locally regulated from programming supply voltage by U1. R5 (750 Ω resistor) is connected to the regulator output to insure proper 5V regulation when the 13.5V programming voltage is applied through the pull-up resistor R4.

Data and clock are connected to the part via tri-state buffer, U2. PC parallel port interface bit D0 is used for data and port bit D1 is used for clock. During programming mode both clock and data buffers are enabled by port bits D2 and D5. During read mode, the data buffer is tri-stated via D2 and the printer data acknowledge signal line is used to receive verification data from the part.

After program/verification mode both the data and clock lines are tri-stated via D2 and D5, allowing these lines to be used by the target circuit. This allows the programmer to remain physically, but not electrically connected to the target system.

An optional 5V line was included in the 3-foot programming interconnect cable for convenience. Short interconnection leads and good grounding are always good construction practice.

To meet the programming/verification specification, the target part's supply voltage should first be set to the maximum specified supply voltage and a program/data read back should then be performed. This process is then repeated at the lowest specified supply voltage.

FIGURE 1: PROGRAMER SCHEMATIC

SOFTWARE DESCRIPTION

The listed code provides a hardware-software interface to a standard PC parallel (Centronix) interface port. The code can be adapted to a microprocessor parallel interface port by substituting an output command for the "biosprint" command.

Control software can transfer the PIC16C84 program, configuration bits, and EEPROM data from a standard PROM interface file into the target system by reading the file and calling the function in Example 1 using the appropriate command name in the definition table, and the data to be programmed. The command names are repeated here for reference.

LOAD_CONFIG	Sets PIC16C84 data pointer to configuration.
LOAD_DATA	Loads, but does not program, data.
READ_DATA	Reads data at current pointer location.
INC_ADDR	Increments PIC16C84 data pointer.

BEGIN_PROG	Programs data at current data pointer location.
PARALLEL_MODE	Puts PIC16C84 into parallel mode (not used).
LOAD_DATA_DM	Loads EEPROM data.
READ_DATA_DM	Reads EEPROM data.

Function "int ser_pic16c84(<command>,<data [or 0]>) is called to perform command. Function returns internal data after read commands.

Do not forget to initiate the programming mode before programming, increment the addresses after each byte is programmed, and put the programmer in run mode after programming.

Designed by: Analog Design Specialist, Inc. P.O. Box 26-0846 Littleton, CO 80126

EXAMPLE 1: PUT TARGET SYSTEM INTO PROGRAM MODE

```
.. program code..
ser_pic16c84(PROGRAM_MODE,0);
.. program code..
```

EXAMPLE 2: READ DATA FROM THE TARGET SYSTEM

.. program code..

- data = ser_picl6c84(READ_DATA,0); // read data
- // transfers data from target part to variable "data"
- .. more program code..

EXAMPLE 3: PROGRAM DATA INTO THE TARGET SYSTEM

```
.. program code..
ser_picl6c84(LOAD_DATA,data);// load data into target
ser_picl6c84(BEGIN_PROG,0);// program loaded data
ser_picl6c84(INC_ADDR,0);// increment to next address
// transfers data from program variable "data" to target part
.. more program code..
```

EXAMPLE 4: PUT TARGET SYSTEM INTO RUN MODE

```
.. program code..
ser_pic16c84(RUN,0);
.. program code..
```

AN589

```
//**
                                                                ++
//**
      SERIAL PROGRAMMING ROUTINE FOR THE PIC16C84 MICROCONTROLLER
                                                                * *
//**
//**
                     Analog Design Specialists
                                                                * *
//**
                                                                * *
//FUNCTION PROTOTYPE: int ser_pic16c84(int cmd, int data)
// cmd: LOAD_CONFIG -> part configuration bits
11
       LOAD_DATA
                    -> program data, write
//
       READ_DATA
                    -> program data, read
11
                   -> increment to the next address (routine does not auto increment)
      INC ADDR
11
      BEGIN_PROG -> program a previously loaded program code or data
11
      LOAD_DATA_DM -> load EEPROM data regesters (BEGIN_PROG must follow)
11
       READ_DATA_DM -> read EEPROM data
11
// data: 1) 14 bits of program data or
11
        2) 8 bits of EEPROM data (least significant 8 bits of int)
// Additional programmer commands (not part of PIC16C84 programming codes)
11
// cmd: RESET
                   -> provides 1 ms reset pulse to target system
11
       PROGRAM_MODE -> initializes PIC16C84 for programming
11
                   -> disconnects programmer from target system
       RUN
11
// function returns:1) 14 or 8 bits read back data for read commands
               2) zero
                                            for write data commands
11
               3) PIC_PROG_EROR = -1 for programming function errors
11
11
               4) PROGMR_ERROR = -2 for programmer function errors
#include <bios.h>
#define LOAD_CONFIG
                     0
#define LOAD_DATA
                     2
#define READ_DATA
                    4
#define INC_ADDR
                     б
#define BEGIN_PROG
                     8
#define PARALLEL_MODE 10 // not used
#define LOAD_DATA_DM 3
#define READ_DATA_DM 5
#define MAX_PIC_CMD 63 // division between pic16c84 and programmer commands
               64 // external reset command, not needed for programming
#define RESET
#define PROGRAM_MODE 65 // initialize program mode
#define RUN
                    66 // electrically disconnect programmer
#define PIC_PROG_EROR -1
#define PROGMR_ERROR -2
#define PTR
                    0 // use device #0
// parallel port bits
11
      d0: data output to part to be programmed
11
      dl: programming clock
11
      d2: data dirrection, 0= enable tri state buf -> send data to part
      d3: Vpp control 1= turn on Vpp
11
      d4: ~MCLR =0, 1 = reset device with MCLR line
11
11
      d5: clock line tri state control, 0 = enable clock line
int ser_picl6c84(int cmd, int data)
                                        // custom interface for pic16c84
 {
 int i, s_cmd;
```

```
if(cmd <=MAX PIC CMD)
                                              // all programming modes
                                              // set bits 001000, output mode, clock & data low
 biosprint(0,8,PTR);
 s_cmd = cmd;
                                              // retain command "cmd"
 for (i=0;i<6;i++)
                                              // output 6 bits of command
   {
   biosprint(0,(s_cmd&0x1) +2+8,PTR);
                                              // set bits 001010, clock hi
   biosprint(0,(s_cmd&0x1) +8,PTR);
                                              // set bits 001000, clock low
   s_cmd >>=1;
   }
 if((cmd ==INC_ADDR) || (cmd ==PARALLEL_MODE)
                                            // command only, no data cycle
   return 0;
 else if(cmd ==BEGIN_PROG)
                                              // program command only, no data cycle
    {
   delay(10);
                                              // 10 ms PIC programming time
   return 0;
   }
  else if((cmd ==LOAD_DATA)||(cmd ==LOAD_DATA_DM)||(cmd ==LOAD_CONFIG)) // output 14 bits
   for (i=200;i;i-) ;
                                              // delay between command & data
                                              // set bits 001010, clock hi; leading bit
   biosprint(0,2+8,PTR);
   biosprint(0, 8,PTR);
                                              // set bits 001000, clock low
   for (i=0;i<14;i++)</pre>
                                             // 14 data bits, lsb first
   {
   biosprint(0,(data&0x1) +2+8,PTR);
                                              // set bits 001010, clock hi
   biosprint(0,(data&0x1) +8,PTR);
                                              // set bits 001000, clock low
   data >>=1;
   }
   biosprint(0,2+8,PTR);
                                              // set bits 001010, clock hi; trailing bit
 biosprint(0, 8,PTR);
                                              // set bits 001000, clock low
   return 0;
   }
  else if((cmd ==READ_DATA)||(cmd ==READ_DATA_DM)) //read 14 bits from part, lsb first
   biosprint(0, 4+8,PTR);
                                            // set bits 001100, clock low, tri state data buffer
   for (i=200;i;i-) ;
                                            // delay between command & data
   biosprint(0,2+4+8,PTR);
                                            // set bits 001110, clock hi, leading bit
   biosprint(0, 4+8,PTR);
                                            // set bits 001100, clock low
   data =0;
   for (i=0;i<14;i++)
                                            // input 14 bits of data, lsb first
   {
                                            // shift data for next input bit
   data >>=1;
                                            // set bits 001110, clock hi
   biosprint(0,2+4+8,PTR);
                                            // set bits 001100, clock low
   biosprint(0, 4+8,PTR);
   if(!(biosprint(2,0,0)&0x40)) data += 0x2000; //use printer acknowledge line for input,
                                            //data lsb first
   biosprint(0,2+4+8,PTR);
                                            // set bits 001110, clock hi, trailing bit
                                            // set bits 001100, clock low
   biosprint(0, 4+8,PTR);
   return data;
    }
  else return PIC_PROG_EROR;
                                            // programmer error
  }
else if(cmd == RESET)
                                            // reset device
```

AN589

```
{
   biosprint(0,32+16+4,PTR);
                                                 // set bits 110100, MCLR = low
(reset
                                                 // PIC16C84), programmer not connected
    delay(1);
                                                 // 1ms delay
   biosprint(0,32 +4,PTR);
                                                 // set bits 100100, MCLR = high
   return 0;
    }
 else if(cmd ==PROGRAM_MODE)
                                                 // enter program mode
    {
   biosprint(0,32+16+4,PTR);
                                                 // set bits 110100, Vpp off, MCLR =low
                                                 //(reset PIC16C84)
    delay(10);
                                                 //10 ms, allow programming voltage to stabilize
   biosprint(0,8,PTR);
                                                 // set bits 001000, Vpp on , MCLR = 13.5 volts,
                                                 // clock & data connected
   delay(10);
                                                 // 10 ms, allow programming voltage to stabilize
   return 0;
    }
 else if(cmd ==RUN)
                                                 // disconnects programmer from device
    {
   biosprint(0,32+4,PTR);
                                                 // set bits 100100
   return 0;
    }
 else return PROGMR_ERROR;
                                                 // command error
  }
```


WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-786-7200 Fax: 480-786-7277 Technical Support: 480-786-7627 Web Address: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 4570 Westgrove Drive, Suite 160 Addison, TX 75248 Tel: 972-818-7423 Fax: 972-818-2924

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Detroit

Microchip Technology Inc. Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253 ASIA/PACIFIC

Hong Kong Microchip Asia Pacific Unit 2101, Tower 2 Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431 Beijing Microchip Technology, Beijing Unit 915, 6 Chaoyangmen Bei Dajie Dong Erhuan Road, Dongcheng District New China Hong Kong Manhattan Building Beijing 100027 PRC Tel: 86-10-85282100 Fax: 86-10-85282104 India Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062 Japan Microchip Technology Intl. Inc.

Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934 Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)

Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road

Taipei, Taiwan, ROC Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5858 Fax: 44-118 921-5835

Denmark

Microchip Technology Denmark ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910

France

Arizona Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 München, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

11/15/99

DNV MSC **DNV Certification. Inc** USA The Netherland Accredited by the RvA ANSI * RAB CCRED DIN ISO 9001 / QS-9000 **REGISTERED FIRM**

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro[®] 8-bit MCUs, KEELOQ[®] code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Printed on recycled paper. All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infiningement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No incorpose and no version of the other support systems is not authorized except with express written approval by Microchip. No incorpose are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

