

SP8703

1GHz LOW CURRENT TWO-MODULUS DIVIDER

The SP8703 is a divide by 128/9 programmable divider with a maximum specified operating frequency of 1GHz. The signal (clock) inputs are biased internally and require to be capacitor coupled.

The output stage is CMOS compatible only, the 0 to 1 output edge giving best loop delay performance.

A unique 'power-down' feature is included to minimise power consumption

power consumption.

FEATURES

- DC to 1GHz Operation
- -30° to +70°C Temperature Range
- Unique Power-Down Feature
- **CMOS** Compatible

ABSOLUTE MAXIMUM RATINGS

QUICK REFERENCE DATA Supply Voltage 5.0V ± 0.25V Supply Current 30mA Typical

MODULUS CONTROL Vcc INPUT BIAS DECOUPLE OUTPUT INPUT DECOUPLE (POWER DOWN MP8,DG8

Fig.1 Pin connections - top view

Supply voltage Storage temperature range Max. junction temperature Max. clock I/P voltage -30°C to +150°C +175°C 2.5V p-p

Fig.2 Functional diagram

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): Vcc = +4.75V to 5.25V, Tamb = -30°C to +70°C

Characteristics	Value		Units	Conditions	Notes
	Min.	Max.	Units	Conditions	, 10103
Maximum frequency Maximum frequency	1000 950	50	MHz MHz MHz	T _{amb} = 25°C	Note 1,2,4 Note 1,2,3 Note 1,2,3
Minimum frequency (sinewave) Power supply current Power supply current		40 3	mA mA	Power-up Power-down	Note 3 Note 3
Output high voltage Output low voltage	3.2 0	Vcc 1.7	V	IL = -0.2mA IL = 0.2mA	Note 3 Note 3
Control input high voltage Control input low voltage Control input high current	3.2	Vcc 1.7 50	ν ν μΑ	Divide by 128 Divide by 129 Input = Vcc	Note 3 Note 3 Note 3 Note 3
Control input low current Power-down high voltage	-10 3.2 0	Vcc 1.7	μA V V	Input = 0V Power-down Power-up	Note 3 Note 3
Power-down low voltage Power-down high current Power-down low current	-2	10	μA μA	Input = Vcc Input = 0V	Note 3 Note 3
Clock to output delay Set-up time Release time		30 15 15	ns ns ns	CL = 10pF CL = 10pF CL = 10pF	Note 5 Note 5 Note 5

- NOTES

 1. See Fig.4 for guaranteed operating window.
 2. See Fig.5 for input voltage measurement method.
 3. Tested at 25°C and +70°C only.
 4. Tested at 25°C only.
 5. Guaranteed but not tested.

Fig.3 Timing diagram

Fig.4 Typical input characteristics

Fig.5 Input voltage measurement method

OPERATING NOTES

- 1. The inputs are biased internally and coupled to a signal source with suitable capacitors.

 2. If no signal is present the devices will self-oscillate. If this
- is undesirable it may be prevented by connecting a 15k resistor from one input to pin 4 (ground). This will reduce the sensitivity.

*Tested as specified

in table of Electrical Characteristics

 The circuits will operate down to DC but slew rate must be better than 100V/µs.
 The output stage is of an unusual design and is intended to interface with CMOS. External pull-up resistors or circuits must not be used.