Introduction

The T800-02 CTCSS unit is designed to operate with the T800 Series I range of receivers and transmitters. It will encode and decode CTCSS tone frequencies within the range 67 to 250.3 Hz and is compatible with any other CTCSS unit which conforms to EIA RS220. The T800-02 is internally mounted above the audio processor section onto screw lugs provided on the chassis. Provision has been made for two units to be fitted for dual tone CTCSS if required, however there are limitations to this configuration (refer to TN-566). The T800-02 has silent squelch tail circuitry fitted to improve communication quality.

Parts Required

The T800-02 CTCSS kit should contain the following items:
$1 \times 1800-02$ CTCss PCB
$2 \times$ cable ties
1 x wiring loom complete with socket $1 \times$ spring clip

Fitting

1. Mount the T800-02 PCB in the T800 receiver or transmitter as shown in Figure 1 .

Figure 1 T800-02 Mounting Details
2. Connect the T800-02 to the audio and power supply points in the audio processor as shown in Figure 2 (receivers) or Figure 3 and Figure 4 (transmitters).

Note: For older model receivers without "MUTE I/PA", replace R160 with a zero ohm resistor and connect S 3 to "MUTE I/P" (refer to Technical News No. 51). For T825 receivers, connect S 3 to "MUTE I/P2".

Figure 2 Receiver CTCSS Wiring Details
Note: If fitting a T800-02 PCB to a T800 module already fitted with a T800-07 multichannel PCB, remove C 19 from the T800 PCB.

Figure 3 Transmitter CTCSS Wiring Details

Figure 4 Talk Through Repeater Wiring

Servicing

Refer to TN-566.

Programming

Refer to Table 1 and Figure 5.
The DIP switch codes for standard EIA tones are set out in Table 1 on the following page. Program the DIP switch (SW1) on the T800-02 PCB as shown in Figure 5.

CTCSS PCB
Figure 5 DIP Switch Programming

Non-standard Tones

1. Calculate " n ":
$\mathrm{n}=$
40960 tone frequency required
2. Round off to the nearest whole number.
3. Convert to binary code and program the DIP switch (LSB to " 1 " switch and MSB to " 10 " switch) as shown in Figure 5.
Example: tone frequency $=67.0 \mathrm{~Hz} \frac{40960}{67} \quad=611.343$
therefore $n=611$
convert n to binary code:

n	$\mathrm{n} \div 2=$	Remainder (Switch Position)	Switch Number	Significance
611	305	1	1	LSB
305	152	1	2	
152	76	0	3	
76	38	0	4	
38	19	0	5	
19	9	1	6	
9	4	1	7	
4	2	0	8	
2	1	0	9	MSB
1	0	1	10	

EIA Frequency (RS220)	Actual Frequency	$\begin{aligned} & \text { Error } \\ & \% \end{aligned}$	n	Switch Code ${ }^{\text {a }}$
				MSB LSB
				10987654321
67.0	67.04	+0.06	611	1001100011
71.9	71.86	-0.06	570	1000111010
77.0	76.99	-0.01	532	1000010100
82.5	82.58	+0.10	496	0111110000
88.5	88.47	-0.04	463	01011001011
94.8	94.81	+0.02	432	0110110000
100.0	99.90	-0.10	410	0110011010
103.5	103.43	-0.06	396	0110001100
107.2	107.23	+0.02	382	0101111110
110.9	111.00	+0.10	369	01010110001
114.8	114.73	-0.06	357	0101100101
118.8	118.72	-0.06	345	0101011001
123.0	123.00	0.0	333	0101001101
127.3	127.20	-0.08	322	0101000010
131.8	131.70	-0.07	311	01010011011
136.5	136.53	+0.02	300	0100101100
141.3	141.24	-0.04	290	0100100010
146.2	146.29	+0.06	280	0100011000
151.4	151.14	-0.17	271	01000001111
156.7	156.93	+0.15	261	01000000101
162.2	161.90	-0.19	253	0011111101
167.9	167.87	-0.02	244	0011110100
173.8	173.56	-0.14	236	0011101100
179.9	179.65	-0.14	228	0011100100
186.2	186.18	0.0	220	00111011100
192.8	193.21	+0.20	212	0011010100
203.5	203.78	+0.14	201	0011001001
210.7	211.13	+0.20	194	00110000010
218.1	217.87	-0.10	188	000101111100
225.7	226.30	+0.27	181	0001011010101
233.6	234.06	+0.20	175	00100101111
241.8	242.37	+0.23	169	0010101001
250.3	249.76	-0.22	164	0010100100

a. " 0 " $=$ on, " $1 "=$ off.

Remote Programming Of Encode/Decode Tones

If remote tone programming is required, a 10 -wire loom and socket is provided in the kit for wiring to an additional D-range connector at the rear of the T800 receiver or transmitter. Fit the socket to PL-1 on the T800-02 PCB, feed the wires through the channel provided in the chassis and solder the wires to the D-range connector. Secure the wires with the cable ties and spring clip if required. When using the remote cable, program the DIP switch (SW1) on the T800-02 to all " 1 "s (off)

Adjustments

Refer to Figure 2.
Note: For narrow band sets use half the stated deviation levels.

1. Set the receiver RF mute pot (RV100) to the required threshold (e.g. 20dB sinad).
2. Set the receiver line level pot (RV102) for -10 dBm using a steady received RF signal at approximately -70 dBm .
3. Program the required CTCSS tone.
4. Adjust RV1 on the T800-02 PCB to provide $\pm 600 \mathrm{~Hz}$ (nominal) tone deviation of transmitter modulation
5. Transmitter Deviation

This must be reset so that the maximum deviation for both audio and CTCSS does not exceed $\pm 4.7 \mathrm{kHz}$.
Adjust the transmitter line sensitivity pot (RV100) fully clockwise.
Adjust the transmitter deviation pot (RV106) to set the maximum total deviation of the CTCSS tone and 1 kHz AF to $\pm 4.7 \mathrm{kHz}$.
Sweep the audio frequency from 100 Hz to 4 kHz and ensure that the maximum deviation does not exceed 4.7 kHz .
Readjust RV106 if necessary.
Readjust the line sensitivity for $\pm 3 \mathrm{kHz}$ deviation.
6. Transmitter Tail Timer

The transmitter tail timer must be set up if reverse phase burst is required.
Adjust RV202 to obtain the required tail setting (approximately 80 ms) as follows:

- Observe the "Tx Reg" line of the transmitter with an oscilloscope and trigger on the rising edge of the "Tx Key" (scope: $2 \mathrm{~V} / \mathrm{div}, 20 \mathrm{~ms} /$ div, normal trigger).
- Adjust RV202 fully clockwise and then adjust anticlockwise while keying the transmitter on/off until the required tail is obtained.
- Alternatively, change R245 from 1k5 to 22k and adjust RV202 fully clockwise.

