Electronic circuit simulation with gEDA and NG-Spice by
Example

Andreas Fester

May 25, 2004

Abstract
This article describes how to simulate electronic circuits using the open source packages gEDA (GNU
Electronic Design Automation) and NG-Spice. It was written after I spent some time to get involved with
these packages, and especially NG-Spice needed some effort until the first circuit was ready for simulation.
The article is meant to be a tutorial-by-example, not a reference manual; there is a detailed reference manual
available in the NG-spice distribution.

1 Some SPICE history

SPICE stands for Simulation Program with Integrated Circuit Emphasis. Originally, SPICE was imple-
mented at the University of Berkeley. Other spice flavours have been derived from this implementation, and
today there are several of them, for example winspice for the MS-Windows™ operating system, pspice, It-
spice or tclspice. This article is about NG-spice, which has the goal to be a complete rewrite of the berkeley
spice implementation. Currently it still contains code from berkeley spice, but has fixed a lot of bugs from
the original code base. It is important to understand that each spice flavour might behave different in vari-
ous areas; some of them are more compatible, others are less compatible. It is always necessary to read the
documentation which came with the specific spice implementation. The NG-spice distribution comes with a
detailed reference manual, but this article might help to learn where to start. It might be a good idea to have
the NG-spice reference manual available when reading this article so that specific commands can be looked up
in more detail.

2 Downloading and installing NG-Spice

For the gEDA package, several binary packages are available. Many distributions already contain those
binary packages. For example, for Debian installing gEDA is as simple as apt-get install geda. One of the
packages from testing or unstable should be used, because they are much newer then the package in stable.

The NG-spice package can easily be installed by compiling it from sources. After downloading the tarball,
build a package for your specific distribution:

o\

tar xvzf ng-spice-rework-15.tgz
cd ng-spice-rework-15
./configure --with-readline=yes
make

checkinstall

o° oo oP

o\

Make sure that the GNU readline library is enabled, this makes using the command line interface much
more comfortable.

More information on how to compile NG-spice can be found in the NG-spice user manual which is part of
the NG-spice distribution.

3 Step by Step example

This section contains a very simple step-by-step example to show how to simulate a circuit. Basically, the
circuit will be drawn with gschem and then be simulated interactively with ngspice.

3.1 Drawing the circuit with gschem

The circuit we want to simulate is a simple RC filter. This example was choosen because it contains a very
limited and therefore manageable number of components: a voltage source, a resistor and a capacitor.

Start gschem and draw the circuit shown in Figure 1. Using the schematics editor can be a littlebit confusing
for the first time. Unlike other drawing applications, schematic editors tend to use an approach where the
command has to be choosen first, and then the object on which the command is executed must be selected.
Other graphics applications usually us an approach where the object is choosen and then the command to
execute on these objects is selected.

C1
n0 [ni
| |
1 3,3nF
V1 R1
SIN(0 10 1kHz) 1k
2
0

Figure 1: A simple RC filter.

The values which are shown in each corner are the netnames. They can be set by providing a value for the
attribute netname for each net. A net can basically have any name, with one exception: There must be one net
which is called ”0”. This is the reference (ground) net.

V1 is an independant voltage source. Its value defines the wave form (SIN), the voltage offset (0), the ampli-
tude (10V) and the frequency (1kHz).

Save the schematic as rc. sch.

3.2 Creating the netlist

The input for the spice simulation is a netlist. The netlist can be created from the schematics file using the
command gnetlist. Create the netlist from the schematic file with the following command:

$ gnetlist -g spice -o rc.net rc.sch

gEDA/gnetlist version 20040111

gEDA/gnetlist comes with ABSOLUTELY NO WARRANTY; see COPYING for more details.
This is free software, and you are welcome to redistribute it under certain
conditions; please see the COPYING file for more details.

Loading schematic [rc.sch]

The netlist contains the following lines:

* Spice netlister for gnetlist

* Spice backend written by Bas Gieltjes
Vl n0O O SIN(O 10 1kHz)

Cl nl nO 3,3nF

R1 0 nl 1k

.END

The format of a netlist is quite simple: each line of the netlist file contains one device of the circuit. The
first column in each line contains the name of the device, and the subsequent columns contain the netnames
each pin is connected to and the value of the device. In our example, the third line contains the voltage source,
which is connected to net n0 with pin 0 and to net 0 with pin 1. Its value is SIN(0 10 1kHz). The same
applies to the capacitor and to the resistor.

The first and the last line are special for NG-spice: when reading the netlist, NG-spice treats the first line as
title or description of the circuit. The last line must contain the .END token.

As the format of the netlist files is quite simple, it would even be possible to create those files manually
with a text editor. Some articles about spice simulation even start with this approach, but I dont think that
this is a suitable approach in general. Using a schematics editor, it is much easier to modify the circuit, and
the schematic can also be easily printed or embedded into some documentation. For larger circuits it is really
cumbersome to create the netlist manually. Furthermore, I like integrating tools in a tool chain. This simplifies
work in most cases.

3.3 Simulating the circuit

We are now ready to simulate the circuit. First, we need to decide which kind of analysis to run. SPICE can
be used for different simulations, like transient, frequency (AC) and parameterized:

e A transient simulation is a time simulation. The result shows how the circuit behaves over time.

e An AC simulation is a frequency simulation. The behaviour of the circuit with varying frequency is
described.

o A parameterized simulation can be both a transient or an AC simulation, but varies one or more values
of the circuit. An example would be to simulate how a circuit behaves with a varying value for a specific
capacitor.

For the very first step, we want to see how the input voltage of our circuit behaves over time. We want
to perform a transient analysis of the circuit and show the voltage between the nets 0 and n0. To start the
simulation, launch ngspice:

$ ngspice

Note: can’t find init file.

* k ok k Kk k

** ngspice-15 : Circuit level simulation program

** The U. C. Berkeley CAD Group

** Copyright 1985-1994, Regents of the University of California.

** Please submit bug-reports to: ngspice-devel@lists.sourceforge.net
** Creation Date: Sun May 9 19:55:31 CEST 2004

* Kk k kKK

ngspice 6 ->

We now need to load the netlist:

ngspice 6 -> source rc.net
Circuit: * Spice netlister for gnetlist

ngspice 7 —>

Since we have defined a frequency of 1 kHz for the input voltage, the time period is 1 ms. We want to see
how the input voltage behaves during the first 5 ms. The simulation is started with the following command:

ngspice 9 -> tran 0.0lms b5ms
Doing analysis at TEMP = 300.150000 and TNOM = 300.150000
Warning: vl: no DC value, transient time 0 value used

Initial Transient Solution

Node Voltage
no 0
nl 0
vlf#branch 0

No. of Data Rows : 512
ngspice 10 —>

The first parameter to tran determines the step to use, the second parameter is the end value. If no third
parameter is given, the start time is 0, otherwise the start time is given by this third parameter.

Well - thats all ;-) The simulation is now finished. What is still missing is to make the result of the simulation
visible.

3.4 Viewing the results

Spice has now generated tables with all calculated values (512 values for each of the nodes as shown above).
To make the result visible simply type the following command:

ngspice 10 -> plot nO

This plots the voltage transient of net n0. Note that plots always refer to two nets, that means the difference
voltage between two nets is measured. If only one net name is given, the other net is automatically the reference
net 0. This results in the following window opened:

You should see the diagram with inverted colors on your monitor, i.e. what is white here is black in your
image and vice versa. To make the image more readable and to save ink, I switched the colors before I made
the screenshot. Close the plot window and enter the following commands in NG-spice:

ngspice 11 -> set colorO=rgb:f/f/f
ngspice 12 -> set colorl=rgb:0/0/0
ngspice 13 -> plot nO

XA [

0.0 2.0 4.0 E.0

Figure 2: Screenshot of the plot window

The diagram shows the waveform of the input signal as we expected it, because we defined it so. But now,
we are interested in the voltage across the resistor; additionally, we would like to compare the two signals!
This can be simply achieved by adding the net name of another net to the plot command:

ngspice 13 -> plot n0 nl

\Y — n — n0
10.0
0.0
-10.0
0.0 1.0 2.0 3.0 4.0 5.0
time ms

Figure 3: Input and output of the RC filter.

There is almost no signal remaining at the resistor. The question now is: Are there frequencies which can
pass the filter better? To check this, we will now perform an AC simulation. The general command to perform
an AC simulation is ac (DEC | OCT | LIN) N FStart FEnd. FStart and FEnd are the start and the end frequency.
The optional parameter DEC, OCT or LIN describes whether to vary the frequency linear, per decade or per
octave. In the case of linear variation, N is the number of frequencies to generate. If octave or decade variation
is choosen, N is the number of frequencies per decade or per octave. To perform the AC analysis, the voltage
source must be changed: currently it is defined as a sine wave with an amplitude of 10V and a frequency of
1kHz. For the AC analysis, it must be an AC voltage source. Go back to gschem, load the circuit and modify
the value of the voltage source to AC:

Recreate the netlist, load the netlist into NG-spice and enter the following command to perform the AC
analysis:

ngspice 65 -> ac 1lin 1000 0.1 250kHz
Doing analysis at TEMP = 300.150000 and TNOM = 300.150000

C1
n0 [ni

1 3,3nF

() It

Figure 4: Filter for AC simulation.

Warning: v1: has no value, DC 0 assumed
No. of Data Rows : 1000

This command performs a linear frequency analysis from (almost) 0 Hz to 250kHz. The result can be
viewed by plotting both the voltage source and the voltage on R1:

mV — ni

1000.0

800.0 v

600.0

400.0

200.0

0.0
0.0 50.0 100.0 150.0 200.0 250.0

frequency kHz

Figure 5: Frequency analysis of the RC filter.

In the following sections, we are going to simulate more circuits to get better involved with NG-spice.

4 Simulating a full wave rectifier

D1
1N4148
n0 Nl ni

T
-
Vi1 @ D3 D4 R1
SIN(0 10 50Hz) 1N4148 1N4148 10k
2

D2
Vvag 1N4148

<
Ql

0

Figure 6: A full wave rectifier.

Figure 6 shows the typical full wave rectifier circuit. Both half waves of the input signal can be used, i.e.
the negative half wave is mirrored upwards. This can be seen in Figure 7 which shows the spice simulation of
the ¢

\ v(n1,vdd) tran.v(n0)
10.0
5.0
0.0
-5.0
-10.0
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
time ms

Figure 7: Source voltage transient and voltage across R1

Links to useful resources

URLs

[1] ,TBD <http://www.ecircuitcenter.com/>.

[2] , GPL Electronic Design Automation <http://geda.seul.org>.
[38] , TBD <gnucap> .

[4] , TBD <gwave> .

[5] , NG-SPICE: The free circuit simulator <http://www.ngspice.org>.

http://www.ecircuitcenter.com/
http://geda.seul.org
gnucap
gwave
http://www.ngspice.org

	1 Some SPICE history
	2 Downloading and installing NG-Spice
	3 Step by Step example
	3.1 Drawing the circuit with gschem
	3.2 Creating the netlist
	3.3 Simulating the circuit
	3.4 Viewing the results

	4 Simulating a full wave rectifier

